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Abstract: In this paper, the maximum likelihood and Bayesian estimations are developed based on the pooled sample of two 

independent Type-II censored samples from the left truncated exponential distribution. The Bayesian estimation is discussed 

using different loss functions. The problem of predicting the failure times from a future sample from the sample population is 

also discussed from a Bayesian viewpoint. A Monte Carlo simulation study is conducted to compare the maximum likelihood 

estimator with the Bayesian estimators. Finally, an illustrative example is presented to demonstrate the different inference 

methods discussed here. 
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1. Introduction 

In reliability analysis, experiments are often terminated 

before all units on test fail based on cost and time 

considerations. In such cases, failure information is available 

only on part of the sample, and only partial information on all 

units that had not failed. Such data are called censored data. 

There are several forms of censored data. One of the most 

common forms of censoring is Type-II right censoring which 

can be described as follows: Consider � identical units under 

observation in a life-testing experiment and suppose only the 

first � ≤ � failure times ��:� , �	:�, … , ��:�  are observed and 

the rest of the data are only known to be larger than ��:�. In 

Type-II censoring scheme, if �  is small and �  is relatively 

large compared to � , the precision of the estimates of 

parameters obtained from such a censored data will be very 

low. In such a situation, if it will be possible and convenient 

to take an additional Type-II right censored data from another 

independent sample (possibly of small size s), it might be 

possible to use the combined ordered sample from these two 

Type-II right censored samples in order to increase the 

precision of the estimation. There are a variety of scenarios 

wherein one can obtain combined ordered sample from two 

independent Type-II censored samples arising from a 

common parent distribution. One possible situation is when 

the number of items placed on a life test per run is limited, 

several independent runs need to be done. Another scenario is 

in the context of a meta-analysis when similar life-testing 

experiments from different facilities need to be pooled 

together. 

From [1], the situation in which two independent Type-II 

right censored samples are pooled, and the advantage of 

pooling samples is demonstrated and the joint distribution of 

order statistics from the pooled sample as a mixture of 

progressively Type-II censored samples is expressed. Using 

these mixture forms, the nonparametric prediction intervals 

are then derived for order statistics from a future sample. In 

this paper, we discuss the problem of estimating the unknown 

parameters of the left truncated exponential distribution and 

predicting the failure times from a future sample from the 

sample population when the observed sample is a pooled 

sample from two independent Type-II right censored samples. 

For the Bayesian estimation in this context, we consider 

here three types of loss functions. The first is the squared 

error (SE) loss function which is a symmetric function that 

gives equal importance to overestimation and 
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underestimation in the parameter estimation. The second is 

the linear-exponential (LINEX) loss function, introduced by 

Varian in [2], which is asymmetric and gives differing 

weights to overestimation and underestimation. This function 

rises approximately exponentially on one side of zero and 

approximately linearly on the other side. These loss functions 

have been used by many authors; see, for example, [3], [4], 

[5], [6], [7], [8], and [9]. The third loss function is the 

generalization of the entropy (GE) loss function, used by 

several authors (see, for example, [10]). This more general 

version allows for different shapes of the loss function. 

In many practical problems, one may wish to use past data 

to predict an observation from a future sample from the same 

population. As in the case of estimation, a predictor can be 

either a point or an interval. Bayesian prediction for future 

observations from the exponential distribution has been 

discussed by many authors, including [11], [12], [13], [14], 

[15], [16], [17], [18], and [19]. 

The rest of this paper is organized as follows. In Section 2, 

the description of the model of the pooled sample from two 

independent Type-II censored samples is presented. The 

maximum likelihood (ML) estimator and the Bayesian 

estimators of the unknown parameters under SE, LINEX, and 

GE loss functions are derived in Section 3. The problem of 

predicting the order statistics from a future sample is 

discussed in Section 4. Finally, in Section 5, some 

computational results are presented for illustrating all the 

inferential methods developed here. 

2. The Model Description 

Let ��:�, … , ��:�  and ��:
, … , ��:
 be independent right 

Type-II censored samples from two independent random 

samples ��, … , ��  and ��, … , �
, respectively, drawn from a 

population with distribution function �. In the following, the 

pooled sample from ��:�, … , ��:� ;  ��:
, … , ��:
  will be 

denoted by � = �����, … , ������� where ���� ≤ ⋯ ≤ ������. 
The joint density function of � = �����, … , �������  is 

derived as a mixture of progressively Type-II censored 

samples given by 

����� = ∑ ��������� ��!" + ∑ �$∗��&∗���� �$!" ,         (2.1) 

where  � = �����, … , �������  is a vector of realizations, '� = �'�:���:��
(� , … , '���:���:��
(� �  for ) = 0, . . . , � − 1 , and '$∗ = .'�:���:��
(&∗ , … , '���:���:��
(&∗ /  for 0 = 0, . . . , 1 − 1 , are 

progressively Type-II censored samples from the same 

population based on the progressive censoring schemes 

2� = 30, … ,0, 4 − 1566676668��� 0, … ,0, � − �566676668� � 9,  
2$∗ = :0, … ,0, � − �566676668��$ 0, … ,0, 4 − 1566676668��$ ;,  

respectively, and the constants β= and β>∗ are given by 

�� = ?@A�BC@BC D?EAFB@B�FB� D�EAFF � , for ) = 0, … . , � − 1, 
�$∗ = ?GA&BCGBC D?EAFBGB&EB& D

�EAFE � , for 0 = 0, … . , 1 − 1.  
By using the joint density function of the progressively 

Type-II censored sample, see [20] and [21], the joint density 

function in (2.1) becomes 

����� = ∑ H�I1 − ��J����K
 �I1 − ��J����K� � ∏ �����M!� JM�� ��!" + ∑ H$∗N1 − ��J��$�O� �I1 − ��J����K
 � ∏ �����M!� JM�� �$!"    (2.2) 

 

where H� = ��P� , P� = �
���!�� ��!�
�� � ��!�� ��! , for ) = 0, … . , � − 1, 
H$∗ = �$∗P$∗, P$∗ = �
���!�
 $�!�
�� � $�!�
 ��! , for  0 = 0, … . , 1 − 1. 
In this paper, the underlying distribution is assumed to be 

the left truncated exponential with probability density (PDF) 

and cumulative (CDF) functions as 

��R|T, U� = TexpI−T�R − U�K                  (2.3) 

and 

��R|T, U� = 1 − expI−T�R − U�K,               (2.4) 

with rate parameter T > 0, and location parameter U > 0. If  U  is not restricted to be nonnegative then �2.3�  is more 

appropriately referred to as the two-parameter exponential 

distribution. Introducing distinctive names for these two 

distributions is necessary since it is only the former 

(with  U ≥ 0 ) which is really appropriate as a lifetime 

distribution model. 

The reliability function 2�R� and the ]^_  quantile  `a  of 

the left truncated exponential distribution are given, 

respectively, by 

2�R� = expI−T�R − U�K, R ≥ U, T > 0,            (2.5) 

and 

`a = U − bcd�� a�e , 0 ≤ ] ≤ 1.                  (2.6) 

3. ML and Bayesian Estimation 

In this section, we derive the ML estimator and the 

Bayesian estimators under SE, LINEX and GE loss functions 

for the unknown parameters T and μ. Also, the ML estimator 

and the Bayesian estimators of the corresponding reliability 

and ]^_  quantile functions are developed. 

Using (2.2) and (2.3), the likelihood function of T and μ 
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based on the pooled sample � = �����, … , �������  can be written as 

g�hT, U|J� = ∑ H�T���expi−TIj� + �4 + ���J� − U�Kk� ��!" + ∑ H$∗T���expl−TNj$∗ + �4 + ���J� − U�Om� �$!"          (3.1) 

where 

j� = n�JM − J�� +���
M!�

�J��� − J���4 − 1� + �J��� − J���� − �� for ) = 1, . . . , � − 1, 
and 

j$∗ = n�JM − J�� +���
M!�

�J��� − J���4 − 1� + �J��$ − J���� − �� for 0 = 1, . . . , 1 − 1. 
3.1. ML Estimation 

From (3.1), the log-likelihood function of �T, U� is given by 

log g�hT, U|J� = logl ∑ H�T���t eIu���
����vC w�K� ��!" h h+ ∑ H$∗T���t exu&∗��
����vC w�y� �$!"  z                  (3.2) 

Now, the likelihood function is maximized with respect to U by taking Û|} = J�. To maximize relative to T, differentiate 

(3.2) with respect to T and solve the equation 

∂ log L�hθ, μ|z�∂θ = 0 

and so the ML estimator T�|} of T is readily obtained by solving the following equation 

∑ H��� + 1 − Tj��t eu�� ��!" + ∑ H$∗�� + 1 − Tj$∗�t eu&∗� �$!" = 0.                          (3.3) 

By using the invariance property, the ML estimators of the 

reliability function and the ]^_  quantile function can be 

obtained, respectively, as 

2��R�|} = expN−T�|}�R − Û|}�O, R ≥ U, T > 0,     (3.4) 

and 

`a� |} = Û|} − bcd�� a�e��� , 0 ≤ ] ≤ 1.              (3.5) 

3.2. Bayesian Estimation 

For Bayesian estimation, we use here the natural conjugate 

prior density function for �T, U� given by 

��T, U��Tdt i eI����� w�Kk, 0 < U < �, T > 0,     (3.6) 

where to be a proper density we must have � > −1, ℎ >0, � > 0, see [13]. It follows that the corresponding posterior 

density of �T, U�  given � = J is given by 

�∗�T, U� = � � �∑ H�T�t eI������ w�K� ��!" + ∑ H$∗T�t ex�&∗���� w�y� �$!" z                                          (3.7) 

where � = � + 1 + �, � = � + 4 + �, � = min��, J��,  �� = j� + ℎ + �� + �4 + ��J� − ��,  �$∗ = j$∗ + ℎ + �� +�4 + ��J� − ��, and I is the normalizing constant given by 

� = � � �∑ H�T�t eI������ w�K� ��!" + ∑ H$∗T�t ex�&∗���� w�y� �$!" z �T�U�"�" = ����� �∑ H�I���� � − ��� + ��� �K� ��!" +∑ H$∗ x��$∗� � − ��$∗ + ��� �y� �$!" z,                                                           (3.8) 

with  �. � denotes the complete gamma function. 

Hence, the Bayesian estimator of T under the SE loss function is given by 

T��¡ = ¢ITK = £BC������� ¤∑ ¥�I��K�¦AC� I�����K�¦AC�� ��!" + ∑ ¥&∗
x�&∗y�¦AC� x�&∗���y�¦AC�� �$!" §                                     (3.9) 

and the Bayesian estimator of U under the SE loss function is given by  
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Û�¡ = ¢IUK = £BC��� ���¨ ¤∑ ¥����� ��I��K�¦��I�����K�¦BC� I��K�¦BC�� ��!" + ∑ ¥&∗
���� ��x�&∗y�¦��x�&∗���y�¦BC� x�&∗y�¦BC�� �$!" §.         (3.10) 

The Bayesian estimator of T under the LINEX loss function is given by  

T��} =  �© ª«�l¢Nt ©eOm =  �© ª«� ¬£BC����� ¤∑ ¥�I���©K�¦� I���©���K�¦AC�� ��!" + ∑ ¥&∗
x�&∗�©y�¦� x�&∗�©���y�¦�� �$!" §­                (3.11) 

and the Bayes estimator of U under the LINEX loss function is given by 

Û�} =  �© ª«�i¢It ©wKk =  �© ª«� �� � �® + 1� � t ©w �∑ ¥�I������ w�K�¦AC�� ��!" h�" h h+ h∑ ¥&∗
x�&∗���� w�y�¦AC�� �$!" § �U§.                      (3.12) 

The Bayesian estimator of T under the GE loss function is given by 

T��¯ =  I¢�T °�KBC± = �£BC��� °�� �∑ ¥�I��K�¦B±� I�����K�¦B±�� ��!" hh h+ h∑ ¥&∗
x�&∗y�¦B±� x�&∗���y�¦B±�� �$!" §­

BC±
                     (3.13) 

and Bayesian estimator of U under the GE loss function is given by 

Û�¯ =  I¢�U °�KBC± = �� � �® + 1� � U ° �∑ ¥�I������ w�K�¦AC�� ��!" h�" h h+ h∑ ¥&∗
x�&∗���� w�y�¦AC�� �$!" § �U§

BC± .                 (3.14) 

The Bayesian estimator of the reliability function under the SE loss function is given by 

2��R��¡ = ¢Nt e�² w�O = £BC���������� �∑ ¥�I���² �K¦ I���²���K¦� ��!" h h+ ∑ ¥&∗
x�&∗�² �y¦ x�&∗�²���y¦� �$!" §                  (3.15) 

and the Bayesian estimator of the ]^_  quantile function under the SE loss function is given by 

ξ́µ¶· = EIUK − log�1 − p�¢ x�ey = Û�¡ − log�1 − ]� £BC������� �∑ ¥�I��K�¦AC� I�����K�¦AC�� ��!" h h+ ∑ ¥&∗
x�&∗y�¦AC� x�&∗���y�¦AC�� �$!" §.  (3.16) 

4. Bayesian Prediction of Order Statistics 

from a Future Sample 

Let ¹�:º, ¹	:º, … , ¹º:º be the order statistics from a future 

random sample of size »   from the same population. We 

discuss here the Bayesian prediction of ¹M:º, for ¼ = 1, . . . , », 

based on the observed pooled ordered sample � =

�����, ��	�, … , ��½�¾�� . We derive the Bayesian predictive 

distribution for ¹M:º , and then find the Bayesian point 

predictor and prediction interval for ¹M:º. 

It is well known that the marginal density function of the ¼^_  order statistic from a sample of size » from a continuous 

distribution with CDF ��R� and PDF ��R� is given by 

�¿À:Á�hÂ|T, U� = º!�M ��!�º M�! I��Â�KM �I1 − ��Â�Kº M��Â�, Â ≥ 0,                                    (4.1) 

for 1 ≤ ¼ ≤ »; see [22]. 

Upon substituting (2.3) and (2.4) in (4.1), the marginal density function of the ¹Ã:º becomes 

�¿À:Á�hÂ|T, U� = ∑ ���¼�Tt eÄ�Å w� , Â > U,   1 ≤ ¼ ≤ »,M ��!"                                           (4.2) 

where δ = » − ¼ + ℎ + 1and ���¼� = �−1�� º!�M � ��!�º M�!�! 
for ℎ = 0, … , ¼ − 1. 

By forming the product of (3.7) and (4.2), integrating out �T, U�  over the set l�T, U�: T > 0, 0 < U < 4)���, ¹M:º�m 

and introducing the proportionality constant, the Bayesian 

predictive density function of ¹M:º, given � = J, is then 

�¿Ç:Á∗ �Â|J� = È���Â|J�               0 < Â < �,�	�Â|J�                       Â > �,h             (4.3) 

where 
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���Â|J� = � � �∗�T, U��¿À:Á�hÂ|T, U��T�UÅ"�" = � � �® + 1� �∑ ∑ ¥��É�M����Ä� lI�� + ��� − Â�K ����� − I�� + �� +M ��!"� ��!"ÊÂK �����kh h+ ∑ ∑ ¥��É�M����Ä� �N�$∗ + ��� − Â�O ����� − N�$∗ + �� + ÊÂO �����zM ��!"� �$!" z                               (4.4) 

and 

�	�Â|J� = � � �∗�T, U��¿À:Á�hÂ|T, U��T�U�"�" = � � �® + 1� �∑ ∑ ¥��É�M����Ä� lI�� + Ê�Â − ��K ����� − I�� + �� +M ��!"� ��!"ÊÂK �����kh h+ ∑ ∑ ¥��É�M����Ä� �N�$∗ + Ê�Â − ��O ����� − N�$∗ + �� + ÊÂO �����zM ��!"� �$!" z                  (4.5) 

From (4.3), we simply obtain the predictive survival function of ¹M:º, given � = J, as 

�Ë¿Ç:Á∗ �Ì|J� = È�Ë��Â|J�               0 < Ì < �,�Ë��Â|J�                       Ì > �,h                                                             (4.6) 

where 

�Ë��Â|J� = � ���Â|J��Â�Í + � ���Â|J��Â��                                                            (4.7) 

with 

� ���Â|J��Â�Í = � � �®� �∑ ∑ ¥��É�M����Ä� �I��KB¦ I������ Í�KB¦
� − I�����Ä���KB¦ I������ÄÍKB¦

Ä zM ��!"� ��!" h + h∑ ∑ ¥&∗�É�M����Ä� ¤x�&∗yB¦ x�&∗���� Í�yB¦
� −M ��!"� �$!"

x�&∗���Ä���yB¦ x�&∗����ÄÍyB¦
Ä Î§                                                                   (4.8) 

� �	�Â|J��Â�� = � � �®� �∑ ∑ ¥��É�M�Ä���Ä� iI��K � − I�� + ��� + Ê�K �kM ��!"� ��!" h + h∑ ∑ ¥&∗�É�M�Ä���Ä� �N�$∗O � −M ��!"� �$!"N�$∗ + ��� + Ê�O �zz  
(4.9) 

and 

�Ë	�Â|J� = � �	�Â|J��Â�Í = � � �®� �∑ ∑ ¥��É�M�Ä���Ä� iI�� + Ê�Ì − ��K � − I�� + �� + ÊÌK �kM ��!"� ��!" h  
(4.10)                                                       + h∑ ∑ Ï¥&∗�É�M�Ä���Ä� �N�$∗ + Ê�Ì − ��O � − N�$∗ + �� + ÊÌO �zÐM ��!"� �$!" Ð.  

The Bayesian point predictor of ¹M:º, under SE loss function is the mean of the predictive density, given by 

¹ÑM:º = � Â���Â|J��Â�" + � Â�	�Â|J��Â��                                                                (4.11) 

where 

� Â���Â|J��Â�" = � � �®� �∑ ∑ ¥��É�M����Ä� ��I��KB¦
� − I��KCB¦ I�����KCB¦�� ���¨ + �I�����Ä���KB¦

Ä + I�����Ä���KCB¦ I�����KCB¦�� ��Ä¨ zM ��!"� ��!" h  
(4.12) 

   +h∑ ∑ ¥&∗�É�M����Ä� ¤�N�&∗OB¦
� − N�&∗OCB¦ N�&∗���OCB¦

�� ���¨ + �N�&∗���Ä���OB¦
Ä + N�&∗���Ä���OCB¦ N�&∗���OCB¦

�� ��Ä¨ §M ��!"� �$!" § 

and 

� �	�Â|J��Â�� = � � �®� �∑ ∑ ¥��É�M����Ä� ��I��KB¦
Ä + I��KCB¦

�� ��Ä¨ − �I�����Ä���KB¦
Ä − I�����Ä���KCB¦

�� ��Ä¨ zM ��!"� ��!" h  
(4.13) 

                      + h∑ ∑ ¥&∗�É�M����Ä� ¤�x�&∗yB¦
Ä + x�&∗yCB¦

�� ��Ä¨ − �x�&∗���Ä���yB¦
Ä − x�&∗���Ä���yCB¦

�� ��Ä¨ §M ��!"� �$!" §.  
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The Bayesian predictive bounds of a two-sided equi-tailed 100�1 − Ò�% interval for ¹M:º , 1≤ ¼ ≤ »  can be obtained 

by solving the following two equations: 

�Ë¿À:Á∗ �g|J� = 1 − Ô	 and �Ë¿À:Á∗ �Õ|J� = Ô	  

where �Ë¿À:Á∗ �Ì|J� is as in (4.6), g and Õ denote the lower and 

upper bounds, respectively. 

For the highest posterior density (HPD) method, we need 

to solve the following two equations: 

�Ë¿À:Á∗ ?g¿À:ÁÖJD − �Ë¿Ç:Á∗ ?Õ¿À:ÁÖJD = 1 − Ò  

and  

�¿À:Á∗ ?g¿À:ÁÖJD − �¿À:Á∗ ?Õ¿À:ÁÖJD = 0,  
where �¿À:Á∗ �Â|J� is as in (4.3), g¿À:Á  and Õ¿À:Á  denote the 

HPD lower and upper bounds, respectively. 

5. Numerical Results and an Illustrative 

Example 

In this section, the ML and Bayesian estimates based on 

the SE, LINEX and GE loss functions are all compared by 

means of a Monte Carlo simulation study. A numerical 

example is finally presented to illustrate all the inferential 

results established in the preceding sections. 

5.1. Monte Carlo Simulation 

A simulation study is carried out for evaluating the 

performance of the ML estimate and all the Bayesian 

estimates and for examining the performance of the point and 

interval predictions discussed in the preceding sections. We 

chose the parameter T to be 0.1, 0.5 and 1, with U = 1, and 

the two sample sizes as �4, ��  =  �10,10�  for different 

choices of � and 1 , we computed the ML and Bayesian 

estimates of T and U  under the SE, LINEX and GE loss 

functions using informative priors (IP) and Jeffreys' non-

informative prior (NIP). We repeated this process 1000 times 

and computed the estimated risk (ER) for each estimate by 

using the root mean square error and also computed the bias 

risk (BR) for each case. The ER of all the estimates of T and 

U, for T = 0.1, 0.5 and 1, with U = 1 is summarized in Tables 

1, 2 and 3, respectively. Also, the ER of all the estimates of T 

and U for U = 0.1 and 0.5, with T = 1 is computed and they 

are summarized in Tables 4 and 5, respectively. 

From Tables 1-3, we observe that, for the different choices 

of T, the estimated risks of the Bayesian estimates based on 

the LINEX, GE and SE loss functions are smaller than those 

of the ML estimates. We also observe that the estimated risks 

of all the estimates decrease with increasing �  and 1 even 

when the sample sizes 4  and �  are small. Moreover, a 

comparison of the results for the informative priors with the 

corresponding ones for Jeffreys' non-informative priors 

reveals that the former produces more precise results, as we 

would expect. Finally, we observe that the estimated risks of 

the ML estimates are close to the corresponding ones of the 

Bayesian estimates based on the SE loss function under 

Jeffreys' non-informative priors. 

5.2. Illustrative Example 

In order to illustrate all the inferential results established in 

the preceding sections, we consider the data given in [23] 

(Table 4.1, p. 462). The original data consists of 60 times to 

breakdown in minutes of an insulating fluid subjected to 

high-voltage stress. The data is partitioned by [23] into six 

groups, each with ten insulating fluids. These data have been 

analyzed by [24] by assuming two-parameter exponential 

distribution. We introduce here right censoring in the data 

from groups 1 (Group �) and 5 (Group � ) with � =  9 and 1 =  8, as shown in Table 4. Based on the data in Table 4, we 

computed the ML estimate and the Bayesian estimates of T 

under the SE, LINEX (with Ú =  0.5) and GE (with � =  0.5) 

loss functions using informative prior with ��, ℎ, �, ��  = �0.1, 1, 1, 0.5�,  and for a noninformative prior on �T, U�, � → −1 , ℎ → 0 , � → 0  and � → ∞ ,so that ® = � + 1 −1, � = 4 + �, � = J�,  �� = j�  and �$∗ = j$∗.  Also, we 

computed the ML estimate and Bayesian estimates of the 

reliability (with R = 2 ) and ]^_  quantile (with ] =  0.5 ) 

functions. Moreover, we computed the point predictors as 

well as the bounds of the equi-tailed prediction intervals and 

the HPD intervals for future order statistics ¹M:º  for ¼ =1,2, … ,10 from a future sample of size » = 10 from the same 

population. 

Table 1. Values of the estimated risks of the ML and Bayes estimators for T with different choices of � and 1. 
Ý Þ ß  

Ý�àá Ý�âã Ý�âá Ý�âä 

EB ER EB ER EB ER EB ER 

0.1 4 4 IP 0.0331 0.0688 0.0074 0.0358 0.0070 0.0354 0.0022 0.0318 

   NIP   0.0187 0.0556 0.0187 0.0548 0.0193 0.0468 

 6 4 IP 0.0264 0.0586 0.0067 0.0341 0.0064 0.0338 0.0014 0.0309 

   NIP   0.0153 0.0490 0.0153 0.0484 0.0158 0.0425 

 6 6 IP 0.0197 0.0465 0.0055 0.0307 0.0053 0.0305 0.0009 0.0283 

   NIP   0.0112 0.0399 0.0112 0.0396 0.0115 0.0358 

 8 6 IP 0.0169 0.0413 0.0049 0.0289 0.0047 0.0287 0.0008 0.0269 

   NIP   0.0097 0.0360 0.0097 0.0357 0.0099 0.0326 

 8 8 IP 0.0136 0.0355 0.0041 0.0263 0.0039 0.0262 0.0007 0.0248 
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Ý Þ ß  
Ý�àá Ý�âã Ý�âá Ý�âä 

EB ER EB ER EB ER EB ER 

   NIP   0.0076 0.0314 0.0076 0.0313 0.0078 0.0290 

0.5 4 4 IP 0.1657 0.3440 0.0687 0.2198 0.0537 0.2080 0.0146 0.1895 

   NIP   0.0827 0.2760 0.0680 0.2576 0.0185 0.2345 

 6 4 IP 0.1322 0.2932 0.0593 0.2031 0.0501 0.1940 0.0145 0.1794 

   NIP   0.0677 0.2437 0.0564 0.2305 0.0162 0.2131 

 6 6 IP 0.0987 0.2324 0.0465 0.1759 0.0396 0.1697 0.0106 0.1593 

   NIP   0.0490 0.1989 0.0412 0.1911 0.0118 0.1795 

 8 6 IP 0.0845 0.2064 0.0410 0.1626 0.0350 0.1577 0.0086 0.1488 

   NIP   0.0421 0.1794 0.0355 0.1734 0.0103 0.1637 

 8 8 IP 0.0682 0.1774 0.0333 0.1454 0.0285 0.1417 0.0058 0.1351 

   NIP   0.0328 0.1569 0.0276 0.1527 0.0081 0.1458 

1 4 4 IP 0.3314 0.6881 0.0506 0.3577 0.0134 0.3291 0.0353 0.3247 

   NIP   0.1644 0.5523 0.1078 0.4840 0.0491 0.4698 

 6 4 IP 0.2644 0.5864 0.0477 0.3418 0.0165 0.3183 0.0314 0.3142 

   NIP   0.1348 0.4877 0.0910 0.4381 0.0358 0.4267 

 6 6 IP 0.1975 0.4649 0.0399 0.3074 0.0157 0.2904 0.0207 0.2869 

   NIP   0.0976 0.3979 0.0670 0.3681 0.0260 0.3593 

 8 6 IP 0.1691 0.4128 0.0356 0.2894 0.0143 0.2754 0.0168 0.2721 

   NIP   0.0839 0.3590 0.0578 0.3361 0.0230 0.3277 

 8 8 IP 0.1364 0.3548 0.0294 0.2641 0.0121 0.2534 0.0114 0.2508 

   NIP   0.0654 0.3139 0.0451 0.2978 0.0190 0.2917 

Table 2. Values of the estimated risks of the ML and Bayes estimators for U with different choices of � and 1. 

Ý Þ ß  
åæàá åæâã åæâá åæâä 

EB ER EB ER EB ER EB ER 

0.1 4 4 IP 0.4656 0.6270 0.0760 0.4086 0.0454 0.3965 0.1377 0.4481 

   NIP   0.1206 0.5253 0.0871 0.5050 0.0993 0.5343 

 6 4 IP 0.4656 0.6270 0.0703 0.4038 0.0392 0.3905 0.1465 0.4413 

   NIP   0.1193 0.5243 0.0860 0.5039 0.0989 0.5344 

 6 6 IP 0.4656 0.6270 0.0706 0.4013 0.0396 0.3884 0.1442 0.4378 

   NIP   0.1173 0.5264 0.0842 0.5073 0.0999 0.5391 

 8 6 IP 0.4656 0.6270 0.0723 0.4009 0.0415 0.3874 0.1401 0.4348 

   NIP   0.1166 0.5262 0.0836 0.5073 0.0999 0.5394 

 8 8 IP 0.4656 0.6270 0.0694 0.3936 0.0383 0.3795 0.1440 0.4255 

   NIP   0.1156 0.5268 0.0827 0.5083 0.1003 0.5412 

0.5 4 4 IP 0.1039 0.1511 0.0024 0.1161 0.0063 0.1169 0.0253 0.1273 

   NIP   0.0112 0.1181 0.0159 0.1195 0.0411 0.1363 

 6 4 IP 0.1039 0.1511 0.0009 0.1153 0.0046 0.1160 0.0213 0.1247 

   NIP   0.0088 0.1168 0.0132 0.1179 0.0348 0.1317 

 6 6 IP 0.1039 0.1511 0.0011 0.1144 0.0023 0.1149 0.0165 0.1213 

   NIP   0.0061 0.1153 0.0100 0.1161 0.0279 0.1260 

 8 6 IP 0.1003 0.1431 0.0017 0.1057 0.0025 0.1125 0.0179 0.1120 

   NIP   0.0051 0.1150 0.0089 0.1157 0.0255 0.1245 

 8 8 IP 0.1014 0.1442 0.0006 0.1060 0.0025 0.1064 0.0143 0.1113 

   NIP   0.0036 0.1141 0.0071 0.1147 0.0217 0.1216 

1 4 4 IP 0.0520 0.0755 0.0056 0.0588 0.0068 0.0592 0.0110 0.0614 

   NIP   0.0073 0.0603 0.0087 0.0609 0.0140 0.0644 

 6 4 IP 0.0520 0.0755 0.0040 0.0582 0.0051 0.0585 0.0085 0.0601 

   NIP   0.0056 0.0592 0.0068 0.0597 0.0110 0.0621 

 6 6 IP 0.0520 0.0755 0.0021 0.0575 0.0031 0.0577 0.0058 0.0587 

   NIP   0.0037 0.0581 0.0048 0.0584 0.0080 0.0598 

 8 6 IP 0.0531 0.0751 0.0002 0.0557 0.0011 0.0559 0.0035 0.0567 

   NIP   0.0031 0.0578 0.0041 0.0581 0.0070 0.0593 

 8 8 IP 0.0531 0.0751 0.0002 0.0557 0.0011 0.0559 0.0035 0.0567 

   NIP   0.0022 0.0573 0.0031 0.0575 0.0056 0.0583 
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Table 3. The estimated bias and risk of the ML and Bayes estimators for the reliability function (with R =  2) and ]Í�  quantile function (with ] =  0.5) for 

different choices of � and 1. 

Ý Þ ß  
ç�àá ç�âã èéàá èéâã 

EB ER EB ER EB ER EB ER 

0.1 4 4 IP 0.0381 0.0972 0.0096 0.0724 0.2698 2.4694 0.8043 2.6038 

   NIP   0.0073 0.0751   1.0393 3.0730 

 6 4 IP 0.0403 0.0887 0.0099 0.0663 0.1092 2.3490 0.7133 2.4491 

   NIP   0.0081 0.0678   0.8890 2.8056 

 6 6 IP 0.0433 0.0868 0.0112 0.0653 0.0072 2.0760 0.5899 2.1470 

   NIP   0.0098 0.0656   0.7129 2.3859 

 8 6 IP 0.0442 0.0851 0.0114 0.0641 0.0857 1.9997 0.5540 2.0528 

   NIP   0.0101 0.0641   0.6568 2.2535 

 8 8 IP 0.0456 0.0835 0.0120 0.0625 0.1479 1.8030 0.4823 1.8378 

   NIP   0.0109 0.0621   0.5604 1.9840 

0.5 4 4 IP 0.0362 0.1380 0.0126 0.0998 0.0540 0.4939 0.1855 0.5431 

   NIP   0.0146 0.1152   0.2447 0.6499 

 6 4 IP 0.0235 0.1235 0.0108 0.0947 0.0218 0.4698 0.1576 0.5030 

   NIP   0.0121 0.1063   0.1994 0.5811 

 6 6 IP 0.0106 0.1048 0.0077 0.0853 0.0014 0.4152 0.1238 0.4340 

   NIP   0.0081 0.0927   0.1512 0.4843 

 8 6 IP 0.0048 0.0984 0.0063 0.0819 0.0171 0.3999 0.1131 0.4125 

   NIP   0.0066 0.0880   0.1352 0.4539 

 8 8 IP 0.0021 0.0881 0.0043 0.0752 0.0296 0.3606 0.0945 0.3662 

   NIP   0.0044 0.0795   0.1104 0.3956 

1 4 4 IP 0.0464 0.1430 0.0236 0.1062 0.0270 0.2469 0.1407 0.2925 

   NIP   0.0055 0.1245   0.1241 0.3276 

 6 4 IP 0.0349 0.1314 0.0200 0.1020 0.0109 0.2349 0.1179 0.2670 

   NIP   0.0045 0.1165   0.1004 0.2917 

 6 6 IP 0.0240 0.1143 0.0161 0.0929 0.0007 0.2076 0.0919 0.2275 

   NIP   0.0040 0.1032   0.0758 0.2425 

 8 6 IP 0.0183 0.1083 0.0149 0.0898 0.0086 0.2000 0.0831 0.2151 

   NIP   0.0040 0.0986   0.0677 0.2271 

 8 8 IP 0.0120 0.0969 0.0129 0.0826 0.0148 0.1803 0.0689 0.1899 

   NIP   0.0040 0.0892   0.0552 0.1977 

Table 4. Times to breakdown of insulating fluids from [23]. 

Group X 0.31 0.66 1.54 1.70 1.82 1.89 2.17 2.24 4.03 * 

Group Y 0.20 0.78 0.80 1.08 1.13 2.44 3.17 5.55 * * 

Table 5. The ML and Bayes estimates for T, U, 2�2� and `".ê 

 Ý�àá Ý�âã Ý�âá Ý�âä åæàá åæâã åæâá åæâä ç�àá�ë� ç�âã�ë� ì�í.îàá ì�í.îâã 

JP 0.4290 0.4275 0.4249 0.4090 0.2000 0.1282 0.1275 0.0858 0.4620 0.4576 1.8159 1.8489 

JP  0.4141 0.4115 0.3951  0.1262 0.1255 0.0828  0.4688  1.9093 

Table 6. Bayesian prediction of ¹M:º for ¼ = 1,2, … ,10. 

 Point predictor Equi-tailed interval HPD interval 

q IP NIP IP NIP IP NIP 

1 0.509 0.502 (0.208,1.220) (0.205,1.209) (0.200,1.012) (0.200,1.001) 

2 0.652 0.669 (0.167,1.700) (0.167,1.763) (0.147,1.652) (0.145,1.703) 

3 0.963 0.991 (0.275,2.333) (0.278,2.424) (0.119,1.990) (0.117,2.063) 

4 1.317 1.358 (0.411,3.035) (0.418,3.157) (0.282,2.676) (0.283,2.778) 

5 1.731 1.787 (0.581,3.847) (0.592,4.006) (0.416,3.418) (0.419,3.551) 

6 2.227 2.302 (0.790,4.825)) (0.806,5.030) (0.583,4.310) (0.590,4.482) 

7 2.848 2.945 (1.051,6.067) (1.074,6.328) (0.792,5.437) (0.803,5.657) 

8 3.676 3.802 (1.389,7.776) (1.421,8.114) (1.058,6.973) (1.074,7.258) 

9 4.917 5.088 (1.860,10.495) (1.905,10.952) (1.413,9.378) (1.437,9.763) 

10 7.399 7.661 (2.645,16.684) (2.711,17.401) (1.930,14.669) (1.965,15.268) 
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6. Conclusions and Discussion 

In this paper, the ML estimation and the Bayesian 

estimation based on the SE, LINEX and GE loss functions 

for the unknown parameters of the left truncated exponential 

distributions have been discussed based on the pooled Type-

II censored samples. Both Bayesian point and interval 

predictions of the future failures have been developed based 

on the observed pooled Type-II censored data. The ML and 

Bayesian estimates have then been compared through a 

Monte Carlo simulation study and a numerical example has 

also been presented to illustrate all the inferential results 

established here. 

The computational results show that the Bayesian 

estimation based on the SE, LINEX and GE loss functions is 

more precise than the ML estimation. Also, the ERs of all the 

estimates decrease with increasing �  and 1  even when the 

sample sizes 4 and � are small. Moreover, a comparison of 

the results for the informative priors with the corresponding 

ones for non-informative priors reveals that the former 

produce more precise results. Finally, the HPD prediction 

intervals seem to be more precise than the equi-tailed 

prediction intervals. 
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