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Abstract: Factor mixture models combine the common factor model and latent class analysis. Given that multilevel data 

structures are very common in educational and social research, the multilevel factor mixture model (ML FMM) is appropriate 

for analyzing nested measurement data when population heterogeneity is unobserved. This simulation study aims to investigate 

the performance of model fit indices with multilevel factor mixture models under various conditions. In data simulation, the 

five-items and one-factor model with between- and within-cluster was chosen. Two subgroups with the factor mean difference 

were simulated so two-class was the correct number of classes. To investigate the performance of information criterions, the 

following conditions were manipulated in this study: class separation, the intraclass correlation (ICC), sample size. For each of 

the generated dataset, one correct model and three mis-specified models were analyzed to fit the data. The results showed that 

class separation was an important factor on detecting the correct number of classes in multilevel factor mixture models. The 

proportion correct increases as the class separation gets larger. Although no single criterion is always best, AIC yield a more 

accurate model selection than aBIC and BIC overall. Only when class separation is large, aBIC is more trustworthy for model 

selection. The results of this study can provide the information for educational researchers interested in analyzing multilevel 

data when the heterogeneity of the population is unknown. 
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1. Introduction 

Social science and educational research are often 

interested in the latent constructs and group comparisons. 

Recently, interest has extended beyond differences in known 

groups leading to exploration of classes of individuals that 

are unknown, so called latent classes. Factor mixture 

modeling (FMM) [1] is a widely accepted data analysis 

method when the population heterogeneity is not observed. It 

is a combination of the common factor model and latent class 

analysis. When modeling FMM, researchers need to specify a 

hypothesized number of classes that might be present in the 

data. The true number of classes, however, is unknown. 

Therefore, researchers must rely on fit indices and various 

performance indicators to identify the best fitting model 

among plausible alternative models.  

The multilevel factor mixture model (ML FMM) is a 

statistical model that explores unobserved population 

heterogeneity with respect to latent variables when data are 

nested. It is based on the assumption that higher-level units 

belong to latent classes that differ in term of the parameters 

of the factor model specified for the lower-level units [2]. 

Thus the basic idea of ML FMM is that some of the model 

parameters are allowed to randomly vary across clusters. 

1.1. Factor Mixture Models 

The factor mixture model (FMM) combines the common 

factor analysis (CFA) and the classic latent class analysis 

(LCA) [3]. According to Lubke and Muthén [1], the FMM 

can be shown as a stepwise extension of the common factor 

model. First, the CFA is a linear regression model in which 

observed variables iy  are regressed on factors iη . The CFA 
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model shown in Equations 1 and 2 also includes a covariate 

ix , which can be related to iy  both directly and through the 

mediation of iη .  

i y i y i iy xν η ε= + Λ + Γ +                      (1) 

i i ixηη ς= Γ +                                      (2) 

One application of the model above is as a multiple 

indicator multiple causes (MIMIC) model to detect 

differential item functioning (DIF). The CFA model is 

extended with a categorical latent class variable (C) to model 

unobserved population heterogeneity. ikc equals to 1 if 

participant i belongs to class k; otherwise, ikc  equals to 0.  

ik k yk ik yk i iky xν η ε= + Λ + Γ +              (3) 

ik i k i ikc xηη ς= Α + Γ +                        (4) 

The probability of belonging to each of the classes is 

predicted for each participant during the model estimation. 

This is expressed by using multinomial logistic regression. 
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α γ+ =  Particularly, 

covariate X predicts the log odds of the probability of 

belonging to a specific class k versus the probability of being 

the last or a reference class (the arbitrarily chosen Kth class). 
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The last part of the model incorporates observed 

categorical outcome variables (U) that are predicted by class 

membership. The regression on class membership is a 

logistic regression.  
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where we have j=1, … , J binary outcomes U. 

1.2. Multilevel Factor Mixture Model 

The multilevel factor mixture model (ML FMM) can be 

extended from the single level FMM to model the nested data 

structure. Considering yij as a vector of all observed 

dependent variable for person i in group j, the ML FMM, 

assuming one factor at within-level, is defined as follows [4]: 

ij ij kj kj ij ijy C k υ η ε = = + Λ +
                   (8) 

ij ij kj kj ij kj ij ijC k B Xη µ η ξ = = + + Γ +
          (9) 
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where ijη  are normally distributed latent variables, ijε and 

ijξ  are zero mean normally distributed residuals. By 

allowing parameters in within-level equations to be random, 

we can build the cluster-level model to get the multilevel part 

[4]: 

j j j jB xη µ η ζ= + + Γ + .                   (11) 

1.3. Class Enumeration 

A variety of studies investigated the issue of deciding on 

the number of classes in mixture modelling. The most 

commonly used information criterion is Akaike Information 

Criteria (AIC) [5, 6]. The usual form of AIC is 

2log 2 ,AIC L p= − +                        (12) 

where log L is the value of the maximized likelihood and p is 

the number of parameters to be estimated. 

Another commonly used criterion Bayesian Information 

Criteria (BIC) was proposed by Schwarz [7] 

2log log ,BIC L p n= − +                  (13) 

where n is the sample size. BIC has a consistent property that 

can lead to a correct choice of model as n get infinite large 

[8]. With this feature, Sclove [9] defined the adjusted BIC 

(aBIC) by replacing the sample size n in the original equation 

with the adjusted sample size n*, n* = (n+2)/24. Therefore, 

penalties in original information criterion are reduced in 

aBIC.  

To date, there is no common acceptance of the information 

indices for determining the number of classes. For 

categorical LCA models, AIC is found to be not a good 

indicator and the aBIC perform better than BIC; for 

continuous LCA, the superiority of the BIC is more evident 

[10, 11]. Yang [8] also examined the performance of 

information indices showing that aBIC had notable success in 

selecting LCA models. The BIC performs well in multilevel 

CFA especially for continuous variables [12]. Nylund, et al. 

[13] also found that the BIC performed well for FMM and 

the aBIC was even better. A few researches indicate that the 

performance of information criteria heavily depends on the 

simulation factors [14]. 

Applied researchers could benefit from statistical 

methodology studies of which model fit indices most often 

correctly select the true model and under what conditions the 

true model is more frequently selected. Few studies have 

investigated the model fit indices in FMM, even fewer in ML 

FMM [1, 15]. Chen, et al. [16] investigated the model 

performance in growth mixture model when nested data are 

ignored, but not included the multilevel mixture model. 
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Therefore, the objective of this study is to investigate the 

performance of model fit indices in ML FMM under various 

conditions. 

2. Methods 

2.1. Data Generation 

The five-items and one-factor model with between- and 

within-cluster was chosen for data simulation. Only outcome 

variable was simulated and investigated in this study. No 

covariate was included in either within-cluster level or 

between-cluster level. The within-level models are 

ij ij kj kj ij ijy C k υ η ε = = + Λ +
                      (14) 

ij ij kj ijC kη µ ξ = = +
                             (15) 

exp( )
( )

exp( )

kj

ij

kjk

P C k
α

α
= =

∑
                        (16) 

where kjα is the expected odds of falling into a given 

category versus the reference category. For the identification 

purpose, for a reference class K, the coefficient kjα was set to 

0 so exp( kjα ) was 1. The between-level equation without 

covariate is 

j jη µ ζ= +                              (17) 

Two subgroups with the factor mean difference were 

simulated so two-class was the correct number of classes. 

The population parameters (Mahalanobis distance, MD and 

intraclass correlation, ICC) were set according to the 

conditions stated below. The standardized loading values at 

the between-level and within-level were all set to 0.8 since 

0.8 was an acceptable reliable measure in practical research. 

For item variance, the within-cluster variance and 

between-cluster item variance was dependent on the item 

ICC. The sum of within-cluster item variance and between-

cluster item variance was set to 1. According to the following 

equation, the between-cluster item variance equals to ICC, 

the within-cluster item variance equals to 1 - ICC. 
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For factor variance, we set the within-level factor variance 

to 1, the within-level residual variance to 0.5 and between-

level residual variances to 0. The between-level factor 

variance was calculated based on the following equation 

corresponding to each item ICC level. 
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      (19) 

where λ  is the loading, Φ  is the factor variance, and Ψ  is 

the item residual variance.  

By assuming normal distribution, data were generated in R 

which was also used to call Mplus 7 to estimate the 

multilevel factor mixture models. 

2.2. Conditions 

To investigate the performance of information criterions, 

the following conditions were manipulated in this study: 

class separation, the intraclass correlation (ICC), sample size. 

The levels of conditions were selected based on previous 

research and reflect the applied situation. 

2.2.1. Class Separation 

Discrepancy among classes is represented by the 

multivariate Mahalanobis distance (MD). The MD is 

primarily a function of the between class standardized factor 

mean differences [11] and therefore, class separation was 

based solely on standardized factor mean differences as 

opposed to the MD. Lubke and Muthén found that greater 

discrepancy among classes as defined by MD leads to 

increased precision in class assignment in FMM [11]. 

However, little is known about the optimal degree of 

discrepancy in ML FMM. Standardized factor mean 

differences were manipulated to assess the impact of 

increasing class separation on the performance of the fit 

indices in ML FMM. The MD values chosen in this study 

were 0.5, 1.0, 1.5, 2.0 and 2.5.  

2.2.2. ICC 

In multilevel modeling, the ICC has been shown to play an 

important role in the relative bias of standard error and factor 

loading estimates. According to Preacher, Zyphur & Zhang 

[17] and Hox & Maas [18], the ICC values used to generate 

data were selected to be 0.1, 0.2 and 0.3. The corresponding 

between-level factor variances were 0.198, 0.445 and 0.763. 

The ICC values at 0.1, .02 and 0.3 are common to see in 

multilevel simulation studies as well as the practical 

educational researches. 

2.2.3. Sample Size 

The within-cluster sample size (n) was set to be 10 and 30; 

the number of clusters (K) was to be 30, 50 and 100. Previous 

research has recommended the within-cluster sample size to 

be at least 10 and between-cluster sample size to be at least 

100 [19]. The large sample size is not always feasible in 

practical research, so the sample size chosen in this study is 

relatively small.  

With fully crossed design, there are 5 3 2 3 90× × × =
conditions. Each condition was replicated 100 times, thus 

there were 90 100 9000× =  datasets. 

2.3. Data Analysis 

For each of the generated dataset, one correct model and 

three mis-specified models, a total of four models, were 

analyzed to fit the data. The four models are as follows: 

Model 1 one-class ML FMM; Model 2 two-class ML FMM 
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(correct number of classes); Model 3 three-class ML FMM; 

Model 4 four-class ML FMM. Mplus 7 was used to run data 

analysis.  

The fit indices AIC, BIC and aBIC provided in Mplus 

were assessed in four models for each of the 9000 datasets. 

The advantage of Monte Carlo simulation studies is that the 

correct model is known and therefore, the performance of fit 

indices can be assessed. For AIC, BIC and aBIC indices, the 

lower the value is the better fit the model is. Take AIC for 

example, if the AIC is lowest in class=2 compared with 

class=1, class=3 and class=4, we say AIC indicates the best 

fit model of class=2 and lead to the correct model selection. 

The proportion of times that each fit index lead to the 

selection of correct model was calculated to represent the 

accuracy of fit indices. 

3. Results 

The likelihood-based fit indices for comparison among the 

specified models include AIC, BIC and aBIC. The fit indices 

were compared under various conditions that are latent mean 

differences, item ICC, the number of clusters and the within-

cluster sample size. In this section, model convergence rates 

are reported first, followed by the performance of the fit 

indices.  

Although 100 replications were attempted for each 

condition, the percentage of converged solutions varied 

across the conditions and models. Especially, a high 

percentage of non-convergence occurred more frequently in 

conditions with smaller latent mean difference and smaller 

sample. Model with more classes also attempted to have 

lower convergence rates. The overall convergence rate for 

each condition in four models was approximately 96%. For 

further data analysis, if any solution for any number of 

classes did not converge in each condition, we exclude the 

case for data analysis. Thus, 7763 out of 9000 cases were 

assessed for the performance of fit indices. 

The proportion of times each of the AIC, BIC, aBIC led to 

selection of the correctly specified model among the 

converged solutions was calculated for various condition. 

Figure 1 shows the proportion of correct identification of the 

two-class model for class separation at the level of 0.5, 1.0, 

1.5, 2.0 and 2.5. Results showed that class separation was an 

important factor on detecting the correct number of classes in 

ML FMMs. The correct detection yield by AIC, BIC and 

aBIC ranged from approximately 10% to 90% as class 

separation increased. When class separation was 2 standard 

deviations, the proportion correct increased dramatically to 

0.733, 0.417 and 0.681 for AIC, BIC and aBIC, respectively. 

When the class separation was 2.5 standard deviations, the 

proportion correct were 0.830, 0.794 and 0.903 for AIC, BIC 

and aBIC, respectively. As shown in Figure 1, when latent 

mean difference is smaller than 2, AIC performed better over 

BIC and aBIC; however, when latent mean difference is 2.5, 

aBIC had the best correct model detection.  

 

Figure 1. Proportion correct by latent mean differences (D). 

The impact of sample size varied slightly across the levels 

we studied. Figure 2 presented the proportion correct to 

detect the two-class models by the number of clusters and 

within-cluster sample size. Not surprisingly, when number of 

clusters (K) within-cluster sample size (n) increased, the 

proportion correct tended to increase slightly ranging from 

0.167 to 0.454. AIC and aBIC were comparatively better 

indices than BIC. AIC leads to the selection of correct model 

more frequently than aBIC. However, when within-cluster 

sample was as low as 10, the selection yield by all fit indices 

seems to have an unstable pattern. 

 

Figure 2. Proportion correct by number of clusters (K) and within-cluster sample size (n). 
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The item intraclass correlation coefficients (ICC) no doubt 

varies in multilevel studies. Figure 3 showed that the 

proportion correct yield by all three fit indices decreased 

slightly when item ICC increased from 0.1 to 0.3.  

 

Figure 3. Proportion correct by item ICC. 

Previous results showed that class separation (D) had a 

rather dramatic impact on detecting the correct number of 

classes in ML FMMs. Thus the following section focused on 

the interaction of class separation and the other factors which 

are number of clusters (K), within-cluster sample size (n) and 

the item ICC.  

Table 1 showed that when latent mean difference and 

number of clusters increased the model fit indices performed 

generally better for detecting the correct. However, when 

latent mean difference was small such as 0.5 and 1.0, the 

ability to detect the correct models tended to be unstable 

when number of clusters increased. When latent mean 

difference and number of clusters were small, the fit indices 

performed poorly. When latent mean difference was 2 or 

larger, the AIC and aBIC improved dramatically to about 

0.596 to 0.974 correct detection of the number of classes. 

AIC detected the correct model more accurately than the 

other two fit indices when latent mean differences were 0.5, 

1.0, 1.5 or 2.0 standard deviations. When the latent mean 

difference became large enough (D=2.5), aBIC performed 

best regardless of the number of clusters. 

Table 1. Percentage correct by latent mean differences (D) and number of 

clusters (K). 

K D AIC BIC aBIC 

30 0.5 0.133 0.009 0.084 

 
1 0.181 0.016 0.138 

 
1.5 0.392 0.065 0.289 

 
2 0.662 0.272 0.596 

 
2.5 0.79 0.704 0.837 

50 0.5 0.105 0.007 0.06 

 
1 0.158 0.02 0.09 

 
1.5 0.356 0.053 0.243 

 
2 0.723 0.372 0.664 

 
2.5 0.821 0.762 0.899 

100 0.5 0.102 0.007 0.031 

 
1 0.102 0.008 0.032 

 
1.5 0.358 0.077 0.206 

 
2 0.814 0.606 0.782 

 
2.5 0.88 0.916 0.974 

Similarly to the interaction with number of clusters, the 

interaction of latent mean differences with within-cluster 

sample size showed a similar pattern. Overall, when D an n 

increased the proportion correct increased (Table 2). When 

latent mean differences were small at the level of 0.5, 1.0 and 

1.5, the accuracy of AIC and BIC for detecting the correct 

models decreased as within-cluster sample size increased. 

However, when latent mean difference became as large as 2 

and 2.5, the accuracy of AIC, BIC and aBIC increased as 

within-cluster sample size increased. Especially when the 

within-cluster sample size and latent mean difference were 

large (n=30 and D=2.5), the proportion for identifying 

correct models were 0.915, 0.953 and 0.983 for AIC, BIC 

and aBIC, respectively. Comparing the three fit indices, AIC 

performed better than aBIC and the BIC had the worst 

performance for latent mean differences at 0.5, 1.0, 1.5 and 

2.0. When the latent mean difference was at 2.5, aBIC 

performed best with both n=10 and n=30. 

Table 2. Percentage correct by latent mean differences (D) and within-

cluster sample size (n). 

n D AIC BIC aBIC 

10 0.5 0.171 0.015 0.11 

 1 0.224 0.027 0.152 

 1.5 0.381 0.073 0.281 

 2 0.640 0.278 0.582 

 2.5 0.746 0.635 0.824 

30 0.5 0.056 0 0.008 

 1 0.070 0.003 0.021 

 1.5 0.357 0.057 0.211 

 2 0.825 0.556 0.780 

 2.5 0.915 0.953 0.983 

Table 3 shows the proportion of detecting the correct two-

class models by the item ICC and latent mean differences. 

AIC, BIC and aBIC all performed better when latent mean 

differences was larger, but the item ICC showed little impact 

on the performance. The slight performance changes 

according to ICC were inconsistent when latent mean 

differences being held at different levels. 

Table 3. Percentage correct by item ICC and latent mean differences (D). 

Item ICC D AIC BIC aBIC 

0.1 0.5 0.134 0.009 0.074 

 1 0.158 0.019 0.098 

 1.5 0.408 0.098 0.317 

 2 0.790 0.507 0.770 

 2.5 0.877 0.862 0.938 

0.2 0.5 0.093 0.009 0.050 

 1 0.122 0.016 0.080 

 1.5 0.364 0.050 0.221 

 2 0.734 0.413 0.672 

 2.5 0.826 0.778 0.903 

0.3 0.5 0.113 0.005 0.052 

 1 0.161 0.009 0.083 

 1.5 0.334 0.046 0.199 

 2 0.675 0.330 0.600 

 2.5 0.788 0.742 0.868 
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4. Discussion 

The purpose of this study is to investigate the performance 

of model fit indices in multilevel factor mixture model under 

various conditions: class separation, number of clusters, 

within-cluster sample size and item ICC. Our results showed 

that the class separation played an important role in correctly 

identify the mixture models. As expected, the proportion 

correct increases as the class separation gets larger. Our 

results indicated the AIC performed better than aBIC overall, 

which in turn outperformed the BIC when the latent mean 

differences were at the four lower levels simulated. Only 

when latent mean difference was at 2.5, aBIC performed best 

at 90% correct identification while AIC and BIC had 

percentage correct identification around 80%. A few studies 

assessed the fit indices in growth mixture models but not 

multilevel factor mixture model. Nylund et al. paper revealed 

that BIC outperformed aBIC in latent class analysis and 

growth mixture modeling [13]. Tofighi and Enders found the 

AIC performed better than BIC when the sample size was 

small (N=400, 700) and the class separation was low in the 

growth mixture models [20]. In our study, the sample size 

choice was relatively small and we simulated a multilevel 

factor mixture model, which may explain the difference from 

Nylund findings. However, our results were consistent with 

Tofighi and Enders’ findings in the aspect of class separation.  

The accuracy of model detection also increases when either 

the within-cluster sample size and number of clusters increases. 

Yang indicated that small sample size caused instability of the 

information criteria in latent class analysis [8]. When sample 

size increased to 500, most information criteria showed 

noteworthy improvements. Lukociene, Varriale and Vermunt 

explored the sample size influence in multilevel mixture 

modeling [12]. They found that the number of clusters (K) is 

the only appropriate sample size for deciding the mixture 

models, where the K values they chose were at 30, 100 and 

1000. In our study, the number of clusters were set at 30, 50 

and 100, and the within-cluster sample size were 10 and 30. 

These are relatively small sample sizes compared with their 

study. Our results indicate that the AIC performed best overall, 

and the BIC and aBIC increased more dramatically than the 

AIC when K gets larger. We also found an interaction between 

sample size and class separation. When the sample size and 

class separation gets larger, the model selection yield by aBIC 

became very accurate. 

The item ICC represents the proportion of variance due to 

between levels, and it is an important index in multilevel data 

analysis. The item ICC was set at three levels in this study: 

0.1, 0.2 and 0.3, which are common in both simulation and 

applied studies. In Varriale and Vermunt’s study [2], they 

investigated the effect of ICC in terms of the percentage bias 

in entropy rather than model fit indices. They revealed that as 

ICC increased the percentage bias in entropy increased 

regardless of the sample size. Our results indicated that the 

proportion of correct identification of the number of classes 

in mixture models decreased slightly when item ICC 

increased. We also found that item ICC had an interaction 

with class separations. Thus this study showed that when 

class separation and ICC increased the accuracy of model 

selection improved as well.  

One difficulty encountered in this study was the high non-

convergence of some conditions. Asparouhov and Muthén 

pointed out that the estimation of multilevel mixture models 

presents a number of challenges [4]. The maximum 

likelihood estimation of mixture models in general is 

susceptible to local maximum solutions. To avoid this 

problem Mplus uses an algorithm that randomizes the 

starting values for the optimization routine. Initial sets of 

random starting values are first selected. Partial optimization 

is performed for all starting value sets which is followed by 

complete optimization for the best few starting value sets. It 

is not clear how many starting value sets should be used in 

general. Different models and data may require different 

starting value sets. A sound strategy to minimize the impact 

of the starting values of the optimization routine is to build 

Multilevel Mixture Models gradually starting with simpler 

models that have few random effects and classes. 

Consequently one can use the parameter estimates from the 

simpler models for starting values for the more advanced 

models. In the Mplus web notes, Asparouhov and Muthén 

[21] explained the setting of starting values in mixture 

modeling, especially for using Tech 11 and Tech 14 to 

request LMR and BLRT. The K-1STARTS, LRTSTARTS 

OPTSEED options are introduced and discussed to avoid 

ineffective attempts and reduce the computational time.  

More work can be done in exploring the model 

comparison indices LMR and BLRT. By doing so, the 

number of population classes can be set at three since these 

two indices involved model comparisons. Nylund et al.’s 

study [13] is one of the first to closely examine the BLRT 

method in mixture modelling and their work may be 

expanded to multilevel factor mixture models. Asparouhov 

and Muthén [21] provided details for setting the starting 

values, which is helpful for solving the non-convergence 

issue in the complex multilevel data sets. However, it is 

worthwhile to note that these explorations could be 

challenging and time-consuming due to the analytical 

complexity of the multilevel latent mixture model. 

5. Conclusion 

Class enumeration by using the model fit indices can be 

challenging due to model complexity. This study investigates 

the performance of model fit indices for selecting multilevel 

factor mixture models under various conditions. The results 

of this study can provide the information for educational 

researchers interested in analyzing multilevel data when the 

heterogeneity of the population is unknown. Class separation 

was an important factor on detecting the correct number of 

classes in multilevel factor mixture models. Increasing 

sample size would help with correctly identifying the correct 

models. Although no single criterion is always best, AIC 

yield a more accurate model selection than BIC and aBIC 

overall; however, when class separation is large, aBIC is 
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more trustworthy for model selection. 
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