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Abstract: Extreme value modelling is widely applied in situations where accurate assessment of the behavior of a process at 

high levels is needed. The inherent scarcity of extreme value data, the natural objective of predicting future extreme values of a 

process associated with modelling of extremes and the regularity assumptions required by the likelihood and probability 

weighted moments methods of parameter estimation within the frequentist framework, make it imperative for a practitioner to 

consider Bayesian methodology when modelling extremes. Within the Bayesian paradigm, the widely used tool for assessing 

the fitness of a model is by using posterior predictive checks (PPCs). The method involves comparing the posterior predictive 

distribution of future observations to the historical data. Posterior predictive inference involves the prediction of unobserved 

variables in light of observed data.. This paper considers posterior predictive checks for assessing model fitness for the 

generalized Pareto model based on a Dirichlet process prior. The posterior predictive distribution for the Dirichlet process 

based model is derived. Threshold selection is done by minimizing the negative differential entropy of the Dirichlet 

distribution. Predictions are drawn from the Bayesian posterior distribution by Markov chain Monte Carlo simulation 

(Metropolis-Hastings Algorithm). Two graphical measures of discrepancy between the predicted observations and the observed 

values commonly applied in practical extreme value modelling are considered, the cumulative distribution function and 

quantile plots. To support these, the Nash-Sutcliffe coefficient of model efficiency, a numerical measure that evaluates the error 

in the predicted observations relative to the natural variation in the observed values is used. Finite sample performance of the 

proposed procedure is illustrated through simulated data. The results of the study suggest that posterior predictive checks are 

reasonable diagnostic tools for assessing the fit of the generalized Pareto distribution. In addition, the posterior predictive 

quantile plot seems to be more informative than the probability plot. Most interestingly, selecting the threshold by minimizing 

the negative differential entropy of a Dirichlet process has the added advantage of allowing the analyst to estimate the 

concentration parameter from the model, rather than specifying it as a measure of his/her belief in the proposed model as a 

prior guess for the unknown distribution that generated the observations. Lastly, the results of application to real life data show 

that the distribution of the annual maximal inflows into the Okavango River at Mohembo, Botswana, can be adequately 

described by the generalized Pareto distribution. 

Keywords: Dirichlet Process Prior, Generalized Pareto Distribution, Markov Chain Monte Carlo, Peaks Over Threshold, 

Posterior Predictive Checks 

 

1. Introduction 

Modelling extreme values is widely applied in situations, 

like civil engineering design, where accurate assessment of 

the behavior of a process at high levels is required. In the 

statistics literature, most of the works on extreme value 

analysis and modelling are based on the likelihood or 

frequentist approach. However, there are several reasons why 

a statistician might prefer Bayesian methodology to the 

frequentist approach when modelling extreme values: (i) 

extreme value data are inherently scarce, making it natural 
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for the statistics practitioner to consider including other 

available prior information in the analysis, (ii) the main 

objective of an extreme value analysis is to estimate the 

probability of future events reaching extreme levels and 

predicting high quantiles and, one approach to prediction is 

through the predictive distribution, which is naturally 

Bayesian and, (iii) the Bayesian methodology does not 

require regularity assumptions required by the maximum 

likelihood and probability weighted moments methods of 

estimation. It is for these reasons that the present paper 

focusses on using posterior predictive checks for assessing 

model-fit for the generalized Pareto distribution, a family of 

continuous probability distributions that is popularly used to 

model the tails of distributions of extreme values. The reader 

is referred to Coles and Powell [7] for a comprehensive 

review of and new developments in the utility of a Bayesian 

approach to the inference of extremes. 

In applications, there are two widely adopted approaches 

to modelling extreme values of a time series of independent 

observations: Block maxima method, in which data are 

subdivided into sequences of observations of size n each, for 

some large n, resulting in a series of block maxima, which 

are commonly modelled using the generalized extreme value 

(GEV) distribution, and, the peaks over threshold (POT) 

approach in which all exceedances over a specified high 

threshold are modelled. In this paper, our main interests is in 

predicting high quantiles, and, as a result, we consider the 

POT approach in which all observations in the series 

1 2, , , nx x x…  which exceed a high threshold, say t , are 

modelled.. The POT methods are based on fitting a stochastic 

model to either the exceedances or the peaks over a threshold 

[9]. We discuss the fit of the generalized Pareto distribution 

(GPD), the most popular model when fitting data using the 

POT method [9, 23, 35]. The advantage of the POT method 

in modelling extremes is that more observations are 

incorporated into the analysis [28]. 

There are many model assessment diagnostics in the 

literature, but no overall goodness of fit test exists and the 

scientist should specify his preference [21]. One of the main 

Bayesian methods for assessing the fit of parametric models 

involves embedding the parametric family into a larger 

family called the extended model [4, 6, 24]. This method is 

more useful if the larger family is infinite-dimensional so that 

the extended model becomes nonparametric [37]. The 

Dirichlet process by Ferguson is one of the many infinite-

dimensional models used in Bayesian inference for 

generating random distribution functions [13]. It is widely 

used in Bayesian inference as a prior on a set of probability 

distributions of random variables, enabling the statistician to 

consider certain nonparametric problems from a Bayesian 

approach. 

To assess the fit of the model mentioned above, we 

consider diagnostics based on predictions generated by the 

model. Predictions are drawn from the Bayesian posterior 

predictive distribution by Markov chain Monte Carlo 

simulation (Metropolis-Hastings Algorithm). Comparing the 

posterior predictive distribution to the observed values is 

generally referred to as a posterior predictive check [14, 17, 

19, 32, 33]. One of the advantages of this approach is that the 

posterior predictive distribution reflects both the parametric 

uncertainty (via prior specification) and sampling uncertainty 

(via the sampling distribution of the future observation). If 

the model fits the data well, then its predictions should 

resemble the data; large discrepancies between the observed 

data and the predicted observations indicate poor fit. 

Posterior predictive checks for assessing statistical models 

has been gaining currency as one of several existing 

techniques for Bayesian evaluation of model goodness of fit. 

For example, Mmino et al. [27] have discussed a general 

statistical procedure for checking the goodness-of-fit of an 

admixture model to genomic data based on posterior 

predictive checks [27]. The authors find that the same model 

fitted to different genomic studies resulted in highly study-

specific results when evaluated using PPCs, illustrating the 

utility of PPCs for model-based analyses in large genomic 

studies. Another author investigates the sensitivity of the 

posterior predictive checks to prior specification for Item 

response theory models and finds that the PPC procedure hit 

rates appear to be influenced by prior specification, but only 

in certain circumstances and the effect of prior in 

formativeness is tied to the choice of discrepancy measure 

[1]. Fawcett and Walshaw [13] demonstrate predictive 

inference for return levels of wind speed and sea-surge 

extremes and recommend the posterior predictive return level 

as the most convenient and useful representation of a return 

level which provides practitioners with a point summary 

capturing estimation uncertainty [13]. A large scale 

simulation study reveals the superiority of the predictive 

return level over the other posterior summaries in many cases 

of practical interest [14]. Despite the utility of posterior 

predictive checks for assessment of model-data fit, literature 

shows that not much work has been done in the area of 

Bayesian inference for extremes values. The present study 

seeks to address this gap by considering posterior predictive 

checks for assessing model fitness for the generalized Pareto 

model based on a Dirichlet process prior. 

In this paper graphical PPCs and a numerical measure of 

discrepancy between predicted observations and observed 

values are both considered. Two graphical diagnostics are 

used: the cumulative distribution function of the predicted 

distribution (PD) overlaid on the estimated GPD and, a Q-Q 

plot of the predicted quantiles against the observed values. 

The numerical measure of discrepancy is given by the Nash-

Sutcliffe coefficient of model efficiency, which measures the 

error in the predicted observations relative to the natural 

variation in the observed values [29]. 

The paper is organized as follows. Section 2 presents the 

generalized Pareto model. Section 3 provides derivations of 

the Dirichlet process, the negative differential entropy of the 

Dirichlet distribution, a statement of some important results 

for the negative differential entropy of the Dirichlet, and a 

description of the method of threshold selection. Derivation 

of the posterior predictive distribution and model assessment 

tools are the subject of section 4. Section 5 presents an 

application on the modelling of annual maximum water 
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inflows into the Okavango River at Mohembo, Botswana, 

during the period 1975-2003. Section 6 contains conclusions 

on the study. 

1.1. The Generalized Pareto Model 

Let 1 2, , , nx x x…  be a series of n  independent random 

variables with a common distribution function F . Extreme 

events are defined by identifying a high threshold, say t , with 

exceedances { : }i ix x t> . Denote by 1 2, , , kx x x…  the k  

observations exceeding a specified threshold t  in a sample of 

n  extreme observations of a process. Threshold selection 

remains an active area of research in extreme value theory. 

De Waal proposed the choice of threshold through 

minimization of the entropy of the Dirichlet process when 

applying the POT method [10]. We follow this approach. 

To formulate the model, consider the asymptotic behavior 

of the series ( ) { }1 2max , , , nn
X X X X= … . With normalizing 

sequences { }na  and { }nb , the complete class of non-

degenerate limiting distributions of ( )( )n nn
X a b−  as 

n → ∞  is the generalized extreme value (GEV) family. This 

has the distribution function. 

1

[1 ( )]

( )

x

G x e
γµγ

σ

−−− +
=

                          (1) 

defined on the set ( ){ }:1 0x xγ µ σ+ − > , with 

, 0,µ σ γ−∞ < < ∞ > − ∞ < < ∞  

The parameters µ  and σ  are location and scale 

parameters, while γ  is a shape parameter which determines 

the weight of the tail of G, and hence F. The current study is 

based on the generalized Pareto distribution which has an 

interpretation as a limiting distribution similar to the GEV 

family [9]. In fact, the GPD belongs in the domain of 

attraction in which the shape parameter in (1) is positive, i.e. 

0γ > . To implement the POT method, denote by 

( ) ( ) ( )
( )

( ) ( ) ( )
( )

1

.
1

F t y F t
P x t x X t

F t

F t y F t
i e F y t

F t

+ −
− ≤ > =

−

+ −
=

−

 

( )
1

, , 1 1 , ; 0
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G x t x t
t

t

γγ
σ γ γ

σ

 
 
 

−
 −
 = − + > >
 
 

 (2) 

The distribution of the excesses, i iY X t= −  of X  over t , 

given that t  is exceeded. Pickands has shown that the 

conditional distribution of threshold exceedances follows the 

generalized Pareto distribution, with distribution function 

(df) given by 

Where tσ  and γ  are the GEV parameters of model (1), 

with 0µ = . If we let 0x ≤ ∞ denote the upper endpoint of F , 

and define ( )F y t  as above, Pickands showed that the GPD 

is a good approximation of ( )F y t  in the sense that 

( ) ( )
00

lim sup ; , 0t
t x y x t

F y t G x σ γ
→ < < −

− = , for some fixed γ  and 

tσ , if and only if F  is in the domain of attraction of one of 

the three extreme value limit laws [31]. Inference based on 

model (2) is generally superior since it applies to more data 

[8]. Parameters of the model (2) are estimated via MCMC 

simulation using the Metropolis-Hastings algorithm. 

1.2. The Dirichlet Process 

Partition the sample space according to the largest k  

ordered observations exceeding a threshold t : 

( ) ( ) ( )1 2
, , ,

k
t x x x< < ∞… . Let ( )F x t  denote the true 

unknown df of random variable X and ( )G x t  be the 

proposed df with known parameters. ( )G x t  is referred to as 

the base measure of Dirichlet process (DP). Define the 

probabilities 

( ) ( ) ( )( ) ( )( )1 1
( )i i i i i

p P x t X x t F x t F x t− −= < < = −  for 

1,2, ,i k= …  and ( )( )1 1k k
p F x t+ = − . Clearly, 

1 2 1, , , kP P P +…  are random variables, and have jointly the k-

variate Dirichlet distribution with parameters 1 2 1, , , kv v v +… . 

That is, ( )1 2 1 1 2 1, , , ~ , , ,k kP P P D v v v+ +… …  with density 

function given by 

( ) ( )

( )

1 1 1
1

1 2 1 1
1 11

1

, , , , 0, 1, 0,i

k k k
o v

k i i i i o ik
i ii

i

i

v
f p p p p p p v v v

v

+ + +
−

+ +
= ==

=

Γ
= ≥ = > =

Γ
∑ ∑∏

∏
…                           (3)

Now, if 1 2 1, , , kP P P +…  are jointly ( )1 2 1, , , kD v v v +…  with 

parameters defined by 

( )( ) ( )( ){ }1
, 1, 2,i i i

v G x t G x t i kβ −= − = …  and 

( )( )1 1k k
v G x t+ = −  under the proposed model, with 

( ) ( )( )G x t F x t= Ε  as a prior for ( )F x t , then, a priori, 

( )F x t  is said to be described through a Dirichlet process 

with parameters ( )G x t  and β , i.e. 

( ) ( )( )~ ,F x t DP G x t β . The parameter β  is called the 
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concentration parameter and measures the analyst’s belief in 

( )G x t  as a prior for ( )F x t . It has been shown that in order 

for the negative differential entropy to reach its lower bound 

for a given k , β  has to be proportional to k , say, 

( )1kβ α= +  for some real 0α > . The choice of α , also 

called the concentration parameter, for a given k  is obtained 

by minimizing the negative differential entropy of the 

Dirichlet distribution. 

From the above setup, it follows that, if we assume a priori 

that a certain threshold model, say the generalized Pareto, 

with df ( )G x t  best fits the data, then it follows by Bayes 

Theorem that, a posteriori, ( )F x t  is described through a 

Dirichlet process with parameters ( ) ( ) ( )1 kG x t k F xβ + +  

and kβ + . Denote this, for x t> , by 

( ) ( ) ( ) ( )( )~ 1 ,kF x t DP G x t k F x kβ β+ + +       (4) 

where ( ) ( )
1

1

1 i

k

k x

i

F x x
k =

= ∂
+ ∑  is the empirical distribution 

function for the random variable X and ( )G x t  is the 

distribution function for the proposed model. 

1.3. The Negative Differential Entropy of the Dirichlet 

Distribution 

Shannon’s seminal discovery of a quantitative measure for 

entropy came in connection with communication theory, and 

very soon his concept of information had a pervasive 

influence on several other disciplines [22]. These disciplines 

include statistics. According to Shannon, a measure of the 

entropy (uncertainty) of a probability distribution reflects the 

amount of ignorance in our state of knowledge. Conversely, a 

measure of the negative entropy (lack of uncertainty) of a 

probability distribution reflects the amount of information in 

our state of knowledge. Though originally defined for a 

discrete random variable, Shannon’s entropy can be extended 

to the case of a continuous random variable. Then the 

entropy is referred to as differential entropy, and its negative 

as negative differential entropy. We concentrate on the latter. 

Suppose the random variables 1 2 1, , , kP P P +…  have jointly 

the k-variate Dirichlet distribution, 1 2 1)( , , , kD v v v +… , with 

probability density function (pdf) 

( ) ( )

( )

1 1 1
1

1 2 1 1
1 11

1

, , , , 0, 1, 0,i

k k k
o v

k i i i i o ik
i ii

i

i

v
f p p p p p p v v v

v

+ + +
−

+ +
= ==

=

Γ
= ≥ = > =

Γ
∑ ∑∏

∏
…

Then, Honkela showed that the negative differential 

entropy, defined as ( )1 1 2 1ln , , ,k kJ E f P P P+ += … , for the 

Dirichlet distribution is given by 

( ) ( ) ( ) ( ) ( ){ }
1 1

1 0 0

1 1

ln ln 1

k k

k i i i

i i

J v v v v v

+ +

+
= =

= Γ − Γ + − Ψ − Ψ∑ ∑  (5) 

where 

1

0

1

k

i

i

v v

+

=

=∑  and ( ) ( )ln
d

v v
dv

Ψ = Γ , the digamma 

function, and { } ( ) ( )0ln i iP v v iΕ = Ψ − Ψ ∀  [20]. 

1.3.1. Some Results for the Negative Differential Entropy of 

the Dirichlet Distribution 

We have established the following results for the NDE of 

the Dirichlet distribution. The proofs have been left out for 

lack of space. 

i. The NDE is a convex function of k. 

ii. The NDE reaches a minimum when 1iv i= ∀
.
 

The lower bound on the NDE is given by 

( )
1

* ln 1 , 1, 2, , 1
k

J k k n
+

= Γ + = −…

. 

For the NDE to reach its lower bound for a given k, β  has 

to be proportional to k, say, ( )1kβ α= +  for some real 

0α > . 

The results are obtained by minimizing the NDE in (2.5) 

with respect to the parameters 1 2 1, , , kv v v +…  of the k-variate 

Dirichlet distribution and solving at zero for 

, 1,2, , 1iv i k= +… , and using the fact that 

1

1

k

i

i

v β
+

=

=∑  from 

the definition of iv . The proofs have been left out for lack of 

space. 

1.3.2. Threshold Selection 

The results stated in section 3.2 are useful in selecting the 

threshold when applying the POT method. The threshold is 

selected by finding the number of observations, k , above the 

threshold t  that minimizes the negative differential entropy 

of the Dirichlet distribution. In practice, plot the relative 

NDE against k  and select the optimal k  as that k  which 

corresponds to the minimum of the relative NDE. The 

relative NDE is obtained by dividing the NDE in (5) by its 

lower bound, ( )
1

* ln 1 , 1, 2, , 1
k

J k k n
+

= Γ + = −… . The 

parameters 1 2 1, , , kv v v +… , and (by implication) α or β  in (5) 

are estimated by MCMC simulation. 

Remark 1: Mazzuchi applied the Dirichlet process to 

introduce a Bayesian technique for assessing goodness of fit 

of models [28]. De Waal and Beirlant showed that the 

relative negative differential entropy of the Dirichlet process 

could possibly be used as a tool for model selection [11]. 

That is, given two competing models, Model 1 and Model 2 

with relative NDE ( )
1

1kJ Model  and ( )
2

2kJ Model  

respectively, the analyst would select the model with the 
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minimum NDE, , 1, 2
ikJ i =  (i.e. the model that gives 

maximum information about the data generating 

mechanism). 

1.3.3. Selection of Concentration Parameter 

Once the threshold has been selected, we can determine 

the concentration parameter α . The choice of α  for a given 

k  is obtained by minimizing the negative differential entropy 

of the Dirichlet distribution. This leads to various selected 

values of α  corresponding to various minimum values of the 

negative differential entropy for different values of k . Thus, 

to find the optimal value of α , plot the selected α ’s against 

k  as in Figure 4. 

2. The Predictive Distribution and Model 

Assessment 

2.1. The Predictive Distribution 

Remark 2: When 1k = , the Dirichlet ( )1 2,D v v  

distribution is identical to the ( )1 2,beta v v  distribution so 

that Equation (2.3) reduces to the pdf of the beta distribution. 

Therefore, from the Dirichlet process, we that marginally, 

( ) ( )~ ,k kF x t beta a b , where  

( ) ( ) ( )1k ka G x t k F xβ= + +  and k kb k aβ= + −  (by (4)). 

( ) ( ), ,H x t data P X x t data
f f f

= < From theory, the 

predictive distribution of a future observation fx is given by 

( ) 1, ,0H x t data h u t data P X x u du
f f f

 
   
    
   

 

= <∫      (6) 

If we let ( )F x t u= , then we have that 

where ( ),h u t data  denotes the posterior density of 

( )F x t u=  given the data ( ) ( ) ( )1 2
, , ,

k
x x x… , which is 

( )1 2,beta v v , and ( )f fP X x u u< = . This implies that 

( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

0
, 1

1
,

kbk k a
f

k k

k

k

f k f

f

a b
H x t data u u du

a b

a

b

G x t k F x
H x t data

K

β
β

−Γ +
= −

Γ Γ

=

+ +
∴ =

+

∫

      (7) 

Equation (7) means that the predictive distribution is a 

weighted mean of the proposed distribution ( )fG x t  and the 

empirical distribution ( )k fF x . 

2.2. Model Assessment 

Let , 1, 2, ,
1

i
p i k

k
= =

+
… . Then by predicting k  future 

values (quantiles), ( )Q p , corresponding to probabilities p , 

we can compare the predicted values with the observed. The 

calculation of the predictive quantiles from 

( )1 2, , , , kH x t x x x…  is done numerically by letting 

, 0 1H p p= < <  and solving for the p
ith

 quantile fx  

numerically. There are different ways of solving for fx . In 

this study, we solve for fx  by discretization of the sample 

space into small intervals and then choose a value for p  

according to these intervals. 

To assess the fit of the model, we visually compare the 

predicted distribution with the observed values by a Q-Q plot 

of the predicted quantiles versus the observed values. If the 

model fits the data well, then its predictions should resemble 

the data, and we would expect the points to approximately 

follow a straight line; large discrepancies between the 

observed data and the predicted observations indicate poor 

fit. 

To complement the Q-Q plot of the observed data and the 

predicted observations we use a numerical measure of 

goodness of fit, Nash-Sutcliffe model efficiency coefficient 

(due to [29]). The coefficient of efficiency measures the error 

in the predicted observations relative to the natural variation 

in the observed values, and is given by 

( )( )

( )

2

1

2

1

1

k

i i

i
N S k

i

i

Q Q p

E

Q Q

=
−

=

−
= −

−

∑

∑
                        (8) 

where ( )iQ p  is the i
th

 predicted quantile, iQ  is the ith 

observed value, for 1,2, ,i k= … , and Q  is the mean of the 

observed values. An 1N SE − =  indicates perfect fit between 

the observed and predicted data (perfect model fit). An 

0N SE − =  indicates that the model is predicting no better 

than using the average of the observed data. Increasingly 

negative values of N SE − indicate increasingly poorer 

predictions (poor model fit). See [30]. 

3. Application 

In civil designs, extreme river discharges with very large 

return periods can be estimated by fitting various probability 

models to available observations. The need for a predictive 

hydrological model of the Okavango Delta was recognized a 

long time ago, and several modelling efforts have been 

carried out, [2, 18], presented a statistical model to predict 

the extent and geographical area of the annual maximum 

flooding of the Okavango Delta from observed inflow and 

local precipitation. In this paper, we model the annual 
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maximum water inflows into the Okavango River at 

Mohembo, Botswana, during the period 1975-2003, by using 

the Dirichlet process based generalized Pareto model. The 

data are given in Figure 1. 

 

Figure 1. Annual maximum inflows (m3/sec) at Mohembo, Botswana, 1975-

2003. 

 

Figure 2. Pareto quantile plot of annual maximum inflow of at Mohembo. 

To check if the distribution that generated the inflow data 

is in the Frechet-Pareto domain of attraction, we graph a 

Pareto quantile plot of the annual maximum inflows, given in 

Figure 2. The Pareto quantile plot in Figure 2 is 

approximately linear, but bends down, at the very largest 

observations. This indicates a weaker behavior of the 

ultimate tail of the annual maximum inflows distribution. So 

we can reasonably conclude that that the underlying 

distribution of the annual maximum inflows of the Okavango 

river at Mohembo belongs in the Frechet-Pareto class, and, 

therefore, proceed to fit a generalized Pareto distribution 

( ), tGPD γ σ to the data above a certain threshold, t. The 

parameter γ  denotes the extreme value index and determines 

the weight of the tail of G, and hence F, while tσ  is the scale 

parameter and is related to the variation in the data at the 

threshold t. These parameters are estimated here through 

Markov chain Monte Carlo simulation. 

Recall the distribution function for ( )~ , tX t GPD γ σ  

given by Equation (2). Assume the maximal data information 

(MDI) prior [32] on the parameters ( ), tγ σ , given by 

( ) 1
, t

t

e
γπ γ σ

σ
−∝                               (9) 

From equations (2) and (9), we obtain the posterior density 

of the ( ), tGPD γ σ  as 

( ) ( ) ( )( ) ( )( )
1 1

1 2 1
1

1
, , , , 1

k
i

t k k
tt i

x t
x x x

γγ
π γ σ

σσ

− −

+
=

 −
 ∝ + 
 
 

∏…

 (10) 

We use the Metropolis-Hastings algorithm with proposal 

density q  taken as lognormal ( ) ( )log , ~ ,t tNγ σ γ σ  to 

restrict γ  to be positive. Initializing with 

( ) ( ), 0.213, 210tγ σ = , Figure 3 (a)-3 (b) shows the behavior 

of Bayes estimates of γ  and tσ  for various values of k , the 

number of observations above threshold t , after 1000 

iterations of the chain for each 5, 6, , 29k = … . 

 

Figure 3. Estimates of gamma against k for annual maximum inflow data. 

 

Figure 4. Estimated sigma (t) against k for annual maximum inflow data. 

Estimates of γ  and tσ  are given by their respective 

posterior modes, producing Bayes estimates ˆ 0.213γ =  and 

130tσ = , respectively. From Figure 3, we notice that 

estimates of γ  stabilize around ˆ 0.213γ = , while Figure 4 

shows that estimates of tσ  for various k  values are stable 
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within the range 16 20k≤ ≤ , suggesting take 130tσ = . 

To select the threshold t through minimizing the negative 

differential entropy of the Dirichlet process, we need 

estimates of parameters of the Dirichlet process 

( )( ) ( )( ){ }1
, 1, 2,i i i

v G x t G x t i kβ −= − = … . This implies that 

we also need an estimate of the concentration parameter, 

( )1kβ α= + , or equivalently, of α . The choice of α  for a 

given k is obtained by minimizing the negative differential 

entropy of the Dirichlet distribution. This leads to various 

selected values of α  corresponding to various minimal 

values of the negative differential entropy for different values 

of k . Thus, to find the optimal value of α , plot the selected 

α ’s against k as in Figure 4, and select as the optimal the 

alpha corresponding to a region within which the estimates 

are stable. 

From Figure 4, we take ˆ 0.26α = , ignoring the first part of 

the graph below 16k =  where the estimates are quite unstable, 

and the last part of the graph after 25k =  where the threshold 

t  would be too low. Too low a threshold is likely to violate the 

asymptotic basis of the model, leading to bias; too high a 

threshold will generate few excesses with which the model can 

be estimated, leading to high variance [8]. For this value of α , 

Figure 5 shows that the minimum value of the relative negative 

differential entropy is reached when 16k =  corresponding to a 

selected threshold of 523.33t =  m
3
/sec. 

 

Figure 5. Selected values of alpha against k for annual maximum inflow 

data. 

 

Figure 6. Relative negative differential entropy against k for annual 

maximum data. 

Using the results above, we fit a generalized Pareto 

distribution with ˆ 0.213γ =  and 130tσ =  to the 16k =  

largest observations. The empirical distribution function, kF , 

the proposed GPD model and the predictive (PD) distribution 

functions are given in Figure 7. Figure 7 shows that the GPD 

gives a good fit to the data in the very largest observations, 

but poor model fit in the lower largest observations. The 

posterior predictive distribution gives reasonably good 

overall fit to the extreme data above t. However, a Q-Q plot 

of the predictive quantiles versus the observed, hereafter 

referred to as a posterior predictive quantile plot, is more 

informative. See Figure 7. From Figure 8, both the predictive 

distribution (PD) and the generalized Pareto distribution 

quantiles (estimated) are consistent with the observed annual 

maximum inflow data for the Okavango River. Notice, 

however, that that the estimated GPD quantiles and the 

predicted quantiles differ at the very largest observations. 

This weaker behavior of the ultimate tail of the annual 

maximum inflows distribution was observed in the 

generalized Pareto quantile plot (Figure 2). Overall, the 

posterior predictive quantile plot shows a good agreement 

between the predicted values and the observed values, 

implying the generalized Pareto distribution fits the annual 

maximum inflow data reasonably well. 

 

Figure 7. Distribution functions of F, G, and H for annual maximum inflow 

data. 

 

Figure 8. Q-Q plots of predicted distribution (PD) and estimated GPD. 

The Nash-Sutcliffe coefficient of model efficiency for 

this dataset is found to be 0.9952N SE − =  (very close to 1), 

indicating that the model produces predictions that closely 
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resemble the observed data. This value of a numerical 

measure of discrepancy between the predicted and the 

observed values further supports the evidence given 

graphically in terms of the posterior predictive quantile 

plot. Thus, we can conclude that the Dirichlet based 

generalized Pareto model fits the annual maximum inflow 

data very well. 

4. Conclusions 

The results from this investigation show that posterior 

predictive checks seem to be reasonable diagnostic tools 

for assessing the fit of the generalized Pareto. In 

particular, the posterior predictive quantile plot seems to 

be more informative in assessing the fit of an extreme 

value model than the probability plot. Selecting a 

threshold by minimizing the negative differential entropy 

of a Dirichlet process has the added advantage of allowing 

the analyst to estimate the concentration parameter from 

the model, rather than specifying it as a measure of his 

belief in the proposed model as a prior guess for the 

unknown distribution that generated the observations. 

Lastly, the results of the analysis of the annual maximum 

inflows data show that the distribution of the annual 

maximal inflows into the Okavango River at Mohembo, 

Botswana, can be adequately described by the generalized 

Pareto distribution.
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