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Abstract: In the present communication information theoretic dependence measure has been defined using maximum 

entropy principle, which measures amount of dependence among the attributes in a contingency table. A relation between 

information theoretic measure of dependence and Chi-square statistic has been discussed. A generalization of this informa-

tion theoretic dependence measure has been also studied. In the end Yate’s method and maximum entropy estimation of 

missing data in design of experiment have been described and illustrated by considering practical problems with empirical 

data. 
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1. Introduction 

The frequencies of data based on counting of objects or 

units are categorized in a classified table known as contin-

gency table. It can be defined as a rectangular array of order 

(m×n) having mn cells, where m and n are the number of 

rows and columns, which are equal to the number of cate-

gories of two attributes.In matrix notation, we have the fol-

lowing  Contingency Table: 

Table  

 Attribute B    Total 

 B
1
 B2 Bi Bn  

A1 O11 O12 O2i O1n r1 

A2 O21 O22 O2i O2n r2 

Bi Oi1 Oi2 Oii Oin ri 

Bm Om1 Om2 Omi Omn rm 

total c1 c2 ci cn T 

In above table, Oij, the (i,j)th cell represents the frequen-

cy of characteristics of Ai and Bj, and ri and cj are the mar-

ginal row and column sum totals. 

The null hypothesis H0 of independence of attributes 

against H1 that attributes are dependent can be tested by 

chi-square test statistic i.e. 
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where eij is the expected frequency corresponding to 

(i,j)th cell having observed frequency Oij. Under the null 

hypothesis of independence 

eij =
T

cr ji
 

where 

T = ∑
=

m

i 1

ri =∑
=

n

j 1

cj                (2) 

A decision about H0 is made by comparing the value of 

calculated chi-square i.e. (1) with the tabulated value of 

chi-square for (m-1) (n-1) degrees of freedom at α % level 

of significance. 

In section 2, an information theoretic dependence meas-

ure has been derived by using maximum entropy principle, 

which measures amount of dependence among the 

attributes or attributes of the contingency table. A relation-

ship between information theoretic measure of dependence 



16 D.S.Hooda et al.: Information theoretic models for dependence analysis andmissing data estimation 

 

and χ2
 statistic has been discussed in section 3. In section 4, 

a generalized information theoretic dependence measure 

has been studied. Yate’s method and maximum entropy 

estimation of missing data in design of experiments have 

been described in section 5. 

2. Information Theoretic Dependence 

Measure 

Contingency table paves the way for the analysis of cate-

gorical data in physical and social sciences. But, many 

times only row and column totals are provided. In such 

cases we make use of Maximum Entropy Principle (MEP) 

which gives the same estimate as given by the hypothesis of 

independence. Soofi and Gokhale (1997) presented an in-

formation theoretic formulation, which gave an insight into 

the degree of dependence among the factors of contingency 

table. Let Oij be the observed frequency in ith row and jth 

column of the m × n contingency table. Let r1, r2,.........,rm 

and c1, c2,.........,cn be the row and column sums or row and 

column marginal totals such that 

∑
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In case only the marginal totals information is provided 

to us, then the cell frequencies have to be estimated. We can 

fill only(m-1)(n-1)cell frequencies arbitrarily and determine 

the mn-(m-1)(n-1) = m + n-1 cell frequencies subject to (3), 

(4) and (5). Thus, there can be infinite number of sets that 

will be consistent with the given row and column totals. 

Out of these, we choose one which has maximum entropy 

as the above described situation demands the use of MEP 

i.e. we should choose the cell values so as to maximize 

S = - ∑∑
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m
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Subject to 
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Using Lagrange's method of multipliers, we have 
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log
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where λ
0
, λ

1
 and λ

2
 are undetermined Lagrange's multip-

liers. 

Differentiating (10), we get 

ijx

L

∂
∂

= - 
T

1
log

T

xij
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T

1
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Equating (11) equal to zero, we get 

ijx̂  = T e T
T )

1
----(

210
λλλ                   (12) 

(7), (8) and (9) together with (12) respectively give 
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From (13) and (14), we get 

mnTe T
T )

1
----( 210 λλλ  . Te T

T )
1

----( 210 λλλ  = cjri    (16) 

Using (15) in (16), we have 

Te T
T )

1
----( 210 λλλ   = 

T

cr ji
                     (17) 

Equation (17) together with (12) gives 

ijx̂   = 
T

cr ji
,                           (18) 

which is the maximum entropy estimate of the (I,j)th cell 

frequency.Let us denote this maximum entropy estimate by 

eij. Then, maximum entropy is 

Smax= - ∑∑
T

xij
ˆ

log 
T

xij
ˆ
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ij
log 
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log

2T

cr ji
 

= - ∑
i T

ri log
T

ri   - ∑
j

T

c j
 log 

T

c j
 

= Sr + SC  ,                                          (19) 

where Sr and SC are the entropies of row and column to-
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tals respectively. 

Let Oij's be the observed cell frequencies, then the entro-

py is given by 

S = - ∑∑
i j T

Oij  log 
T

Oij
                     (20) 

Since S
max

 ≥ S, therefore, 

Sr + SC ≥ S 

It implies 

D = Sr + SC - S ≥ 0,                       (21) 

where D is the difference between Smax and S and is 

called information theoretic measure of dependence [refer 

to Watanabe (1969) and Kapur and Kesavan (1992)]. 

Actually, D > 0, measures the information contained in 

contingency table in addition to information given by row 

and column sum totals. 

From (21), we know 
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It vanishes if and only if 

T

Oij
 =

T

ri  
T

c j
 

Or 

Oij = T

cr ji
 = eij 

Thus, we can conclude that the maximum entropy esti-

mates eij are equal to the estimates obtained from the hypo-

thesis of independence. The amount of deficit or difference 

between Oij and eij values is due to the association or de-

pendence between the factors of contingency tables. So, D 

is an information theoretic measure, which can be used for 

measuring the dependence between the factors of contin-

gency table. 

3. Information Theoretic Dependence 

Measure and χχχχ2 

In this section we study the relationship between infor-

mation theoretic dependence measure D and χ2
 statistic. 

Let 

Oij = eij + ∈ij                               (23) 

where ∈ij is very small quantity, 

Since 
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(22) together with (23) gives 
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Using (25) and neglecting higher order terms, we have 
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Thus, D gives times chi-square information or χ2
 gives 

2T times the additional information given by the observed 

frequencies over the information already provided by the 

row and column totals. It is worth mentioning that χ2
 test 

does not give us the degree of dependence, while it is pro-

vided by information theoretic measure of dependence D. 

Moreover, χ2
 statistic cannot be used for comparing the 

several tables. Many coefficients have been proposed to 

measure the association between row and column factors, 

viz., Yule's coefficient Q of association, Pearson's coeffi-

cients φ2
 of mean square contingency, etc. 

 Similarly, D can be normalized to make it applicable to 

compare the dependence of factors of several tables. The 
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normalized D is given by 

DN = e
-D

 

For D = 0, DN takes value one and for very large D, DN 

is 0. It implies 0 ≤ DN ≤ 1. It may be noted that when DN 

=1, attributes or factors are independent and for DN = 0, 

factors are perfectly dependent. 

4. Generalized Measure of Dependence 

In the present section, we study a generalized measure of 

dependence in contingency table of which D given by (2.19) 

is a particular case. 

We choose the cell frequency which maximizes Harvda 

and Charvat (1967) entropy of degree β given below: 
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We use Lagrange's method of multipliers to maximize 

(27) subject to constraints (28) to (30). 
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where λ0, λ1 and λ2 are undetermined Lagrange's multip-

liers. Now, differentiating (31) w.r.t. xij and equating it to 

zero, we get 
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where λ0, λ1 and λ2 to be determined using (28), (29) 

and (30). Equations (28), (29) and (30) together with (32) 

respectively give 
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From (36) and (35) we get 
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On putting the value of (37) in (32), we have 

ijx̂  = 
T

cr ji
                                 (38) 

Thus, (38) is the maximum entropy estimate of the (i, j)th 

cell frequency denoted by eij. Hence 
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where 
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 is β  degree entropy of row total  and 

β
cS = β-1

1
 [∑

=

n

j 1

(
T

c j
) -1]    (41) 

is β  degree entropy of column total 

From (41), we have 
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Putting this value in (39), we get 
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β
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Hence 
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- S
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which is equal to 0 if 
max

βS = S
β
. Thus, Dβ is generalized 

information theoretic dependence measure between the 

factors of contingency tables and reduce to D given by (21) 

in case 1→β . 

5. Estimation of Missing Data in Design 

of Experiments 

In field experiments we design the field plots. In case we 

find one or more observations missing due to natural ca-

lamity or destroyed by a pest or eaten by animals, it is 

cumbersome to estimate the missing value or values as in 

field trials it is practically impossible to repeat the experi-

ment under identical conditions. So we have no option ex-

cept to make best use of the data available. Yates (1933) 

suggested a method: 

“Substitute x  for the missing value and then choose x
so as to minimize the error sum  of squares”. 

Actually, the substituted value does not recover the best 

information, however, it gives the best estimate according 

to a criterion based on the least square method. 

For the randomized block experiment 

( )( )11 −−
−+=

qp

TqQpP
x                          (44) 

where 
=p Number of treatments, 
=q Number of blocks 

=P Total of all plots receiving the same treatment as 

the missing plot 

=Q Total of all plots in the same block as the missing 

plot 

=T Total of all plots 

For the Latin Square Design, the corresponding formula 

is 

( )
( )( )11

2

−−
−++=
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x tcr

                  (45) 

where 
=p Number of rows or columns of treatments 

=rP Total of row containing the missing plot 

=cP Total of column containing the missing plot 

=tP Total of treatment contained in the missing plot 

=T Grand total 

In case more than one plot yields are missing, we substi-

tute the average yield 

of available plots in all except one of these and substitute 
x  in this plot. We estimate x  by Yate’s method and use 

this value to estimate the yields of other plots one by one. 

Next we discuss the maximum entropy method. If 

nxxx ...,,, 21  are known 

 yields and x  is the missing yield. We obtain the maxi-

mum entropy estimate  

for x  by maximizing: 

∑
= ++
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Thus we get 
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=
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i
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and the value given by (47) is called 

maximum entropy  mean of nxxx ...,,, 21 . 

Similarly, if two values x  and y  are missing, x  and y

are determined from 

x
⌢ [ ] ,...
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yTnx
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ŷ [ ] ,...
1
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The solution of (48) and (49) is 

[ ]Tnx

n

xx xxxyx
1

2
2

1
1 ...ˆˆ ==                         (50) 

Hence all the missing values have the same estimate and 

this does not change if the missing values are estimated one 

by one. 

There are three following drawbacks of the estimate giv-

en by (47) 

(i) x
⌢

 is rather unnatural. In fact x
⌢

is always greater than   

Arithmetic mean of nxxx ...,,, 21 . 

(ii) If two values are missing, the maximum entropy es-

timated for each is the same as given by (50). 

(iii) This is not very useful for estimating missing values 

in design of experiments. 

The first drawback can be overcome by using genera-

lized measure of entropy instead of Shannon entropy. If we 
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use Burg’s [1] measure given by 

B (P) =∑
=

n

i
i

p
1

log                           (51) 

Then we get the estimate 

x
⌢

= 
n

xxx n++ .......21 = x                  (52) 

In fact we choose a value x
⌢

, which is as equal to 

nxxx ...,,, 21 as possible and so we maximize a measure of 

equality. Since there are many measures of equality, there-

fore our estimate will also depend on the measure of equali-

ty we choose. 

The second drawback can be understood by considering 

the fact that the information theoretic estimate for a missing 

value depends on: 

(a) The information available to us 

(b) The purpose for which missing value is to be used. 

The third drawback, as according to the principle of max-

imum entropy, we should use all the information given to 

us and avoid scrupulously using any information not given 

to us. But in design of experiments, we are given informa-

tion about the structure of the design which we are not us-

ing this knowledge in estimating the missing values. Con-

sequently, the estimate is not accurate, however, method 

defined in section 2 be applied to estimate the missing val-

ue ijx  in contingency tables. Accordingly, the value ijx  is to 

be chosen to minimize the measure of dependence D. 
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