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Abstract: Comparing the order statistics of daily returns of the S&P 500 index from 03.01.1950 to 04.03.2013 with the 

corresponding rankits, a linear scale dilation is observed. This observation is used to derive a five-parameter density function 

for the parsimonious description of the unconditional distribution of stock returns. The typical graph of this density function 

looks like a wizard's hat. Its signature feature is the discontinuity at zero. 
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1. Introduction 

Since the introduction of conditional heteroskedasticity 

models by Engle [6] and Bollerslev [5], the focus of 

interest has shifted from the unconditional distribution of 

stock returns to the conditional distribution. Of course, this 

does not mean that the unconditional distribution is 

irrelevant. Not only is it important by itself, but its 

properties also have implications for the conditional 

distribution. 

The typical unconditional distribution of stock returns is 

leptokurtic, i.e., it has more probability mass in its center 

and its tails than a normal distribution. Some decades ago, 

non-normal stable distributions have therefore been used to 

model stock returns [11, 7]. However, because of empirical 

evidence against their crucial properties, in particular the 

invariance under addition [13], and their incompatibility 

with finite second moments, these distributions have gone 

out of fashion. Shifted and scaled t-distributions (or skewed 

versions of them; see, e.g., [8]) and mixtures of normal 

distributions [9] are often used instead. While mixture 

distributions are quite flexible, they require the selection of 

the number of components as well as the estimation of a 

possibly large number of parameters. Moreover, they are 

not designed for the modeling of discontinuities in the 

probability density function. 

In this paper, a simple unconditional distribution is 

proposed which captures all important characteristics of 

stock returns and even allows for a discontinuity of the 

density at zero but requires only five parameters. Section 2 

presents evidence of a linear scale dilation of stock returns, 

which gives some indication of the form of the data 

generating density. The indicated density is fitted to returns 

of the S&P 500 index. The results are given in Section 3. 

Evidence that there is indeed a discontinuity at zero is also 

provided. Section 4 concludes. 

2. Comparing Rankits with Their 

Empirical Counterparts 

The expected value of the rth largest of n independent 

standard normally distributed random variables is given by 
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where φ and Φ denote the probability density function and 

the cumulative distribution function, respectively, of the 

standard normal distribution. Expected normal order 

statistics are called rankits. Figure 1.a shows a plot of 

E(n−r+1,n) against r=1,...,n=1500. B. Wheeler's function 

"normOrder" (R-package "SuppDists") was used for the 

calculation of the rankits. This function is a modification of 

M. Maechler’s C version of Royston's [15] algorithm.   

In the case of a standard normal random sample (x1,...,xn) 

of size n, the rth order statistic x(r) can be regarded as the 

sample counterpart of E(n−r+1,n) (see Figure 1.b). Clearly, 

the match is not perfect. Figure 1.c shows a plot of the 

ratios x(r)/E(n−r+1,n) against r=1,...,n=1500. Extreme 

discrepancies can occur in the neighborhood of zero 

because of the usually unequal numbers of positive and 

negative values. The problem can be alleviated by dividing 

the m negative order statistics x(r), r=1,...,m, by the rankits 

E(2m−r+1,2m), r=1,...,m, and the (n−m) positive order 
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statistics x(r), r=m+1,...,n by the rankits E(2(n−m)−r+1, 

2(n−m)), r=n−m+1,...,2(n−m). Figure 1.d shows a plot of 

these modified ratios Qr, r=1,...,n, against r=1,...,n. 

In the case of zero mean and non-unit variance σ2
, the 

order statistics must be compared with the rankits 

multiplied by σ. In the non-normal case, the discrepancies 

between the order statistics and the rankits can shed light 

on the nature of the deviation from normality. In the 

following, the sample will consist of daily log returns of the 

S&P 500 index. The close prices of the S&P 500 index 

from 03.01.1950 to 04.03.2013 were downloaded from 

Yahoo! Finance. To get more robust results, the total 

sample is divided into nine subsamples of the same size 

(N=12879, n=N/9=1431). Figure 2 suggests two separate 

linear relationships between the modified ratios Qr, r=1,...,n, 

and the order statistics x(r), r=1,...,n, one for the negative 

returns and one for the positive returns. While the intercept 

and the slope of these linear relationships change over time, 

the overall picture remains the same. In each subsample, 

only a negligible fraction of very small returns disturbs the 

approximate linearity. In the next section, the linear scale 

dilation observed in Figure 2 will be used to construct a 

density function for the parsimonious description of stock 

returns.  
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Figure 1. Comparing rankits with order statistics 

1.a Plot of rankits E(n−r+1,n), r=1,...,n=1500 

1.b Plot of n standard normal order statistics  

1.c Plot of ratios x(r)/E(n−r+1,n), r=1,...,n  

1.d Plot of modified ratios Qr, r=1,...,n 

3. A Discontinuous Density Function for 

Stock Returns 

For large C and not too large n, the expected values of 

the order statistics of a truncated normal distribution with 

support on [-C,C] are practically identical to the rankits. 

This is also true for subsets of order statistics and rankits, 

e.g., the first half and the second half, respectively. Let x(1)

≤...≤x(m)<0 be the subsample of all negative returns. 

Assuming that there exists an approximate linear 

relationship between Qr=x(r)/E(2m−r+1,2m) and x(r), 

r=1,...,m, a suitable density function h(x) for the negative 

returns can be obtained from the truncated halfnormal 

density function 
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Figure 2. Linear scale dilation of the daily returns of the S&P index from 

03.01.1950 to 04.03.2013. Figures 2.a-2.i show the plots of the modified 

ratios Qr against the order statistics x(r), r=1,..., n=12879/9=1431 for nine 

non-overlapping subperiods (negative returns red, positive green). 
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Application of an analogous transformation to the positive 

returns and combination of the two density functions gives  
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where λ and 1-λ are the proportions of negative and 

positive returns, respectively. 

Figure 3 compares the density function w(x) fitted to the 

returns of the last subperiod with a normal density and a 

histogram. The estimates 0.0094, -0.237, 0.0085, 0.211 of 

the parameters a, b, A, B were obtained by maximizing the 

log likelihood. The implied values of c=1/(b-a)=-4.058 and 

C=1/(A+B)=4.556 were sufficiently large to confirm that 

the truncation had no effect. The estimate of λ was 0.461. 
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Figure 3. The density function implied by the linear scale dilation of stock 

returns is fitted to the daily returns of the S&P 500 index from 27.06.2007 to 

04.03.2013 and compared with a normal density function (blue) and a 

histogram. 

The breakpoints between the histogram cells were 

determined as the minimum of the returns, the 0.5%, 

1.5%, ..., 49.5% quantiles of a normal distribution with 

mean zero and standard deviation 1.4826 times the median 

absolute deviation of the negative returns from zero, the 

50.5%, 51.5%, ..., 99.5% quantiles of a normal distribution 

with mean zero and standard deviation 1.4826 times the 

median absolute deviation of the positive returns from zero, 

and the maximum of the returns. Figure 4 shows the fitted 

densities for all subsamples. In some of the older 

subsamples, there was a non-negligible number of zero 

returns. This problem was taken care of by adding one half 

to the negative returns and the other half to the positive 

returns. In general, the fit of the density funcion w(x) is 

excellent. The typical graph looks like a wizard's hat. Its 

signature feature is the discontinuity at zero. 

Figure 5 provides evidence that this discontinuity is a 

genuine feature of the unconditional distribution of stock 

returns rather than an artifact produced by the estimation 

method. For each subsample, the cumulative numbers of 

negative returns and positive returns times -1, respectively, 

in the interval (-0.0005,0) are plotted. In each case, the 

positive returns get closer to zero than the negative returns. 

Moreover, the final gradient is typically steeper in the case 

of the negative returns. 
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Figure 4. Catching returns with the wizard's hat. The daily returns of the 

S&P 500 index from 03.01.1950 to 04.03.2013 are divided into nine 

subsamples of the same size and the density w(x) is fitted to each subsample. 
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Figure 5. Evidence in favor of a discontinuity at zero. For each of nine 

subsamples of the daily returns of the S&P 500 index from 03.01.1950 to 

04.03.2013, the cumulative numbers of negative returns (red) and positive 

returns (green) times -1, respectively, in the interval (-0.0005,0) are plotted. 

4. Conclusion 

In view of the many generalizations of the normal 

distribution [1-3, 12, 14], it is somehow surprising that none 

of them prevailed in financial applications. Perhaps it is just 

too difficult to capture all characteristics of stock returns 

with a single smooth density function that depends only on 

few parameters. The problem is that little can be gained by 

modeling negative and positive returns simultaneously. The 

apparent discontinuity at zero is an aggravating factor. 

The solution proposed in this paper is to fit a 

two-parameter density function separately to the negative 

and positive returns. The form of the density was derived 

from a linear scale dilation observed in daily index returns. 

Unless additional restrictions are imposed, this approach 

implies a discontinuity at zero. But this is not necessarily a 

disadvantage because the empirical evidence presented in 

this paper indeed points in that direction. Ultimately, future 

studies will have to determine whether the wizard's hat 

distribution (3) is suitable for the majority of assets and 

sample periods. 

It is hard to tell whether the two parameters for each 

half-axis are sufficient to deal also with extreme 

observations. Perhaps this must be decided on a 

case-by-case basis because this largely depends on the 

respective application. If necessary, there is, of course, 

always the possibility to introduce an additional parameter. 

A possible generalization of (2) is given by  
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Alternatively, instead of using a parametric distribution for 

the extremes, the tail behavior could be investigated 

separately with extreme values theory [10]. 
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