
 

American Journal of Theoretical and Applied Statistics 
2013; 2(6): 221-227 

Published online November 20, 2013 (http://www.sciencepublishinggroup.com/j/ajtas) 

doi: 10.11648/j.ajtas.20130206.19 

 

Estimating the fisher’s scoring matrix formula from 
logistic model 

Okeh UM
1
, Oyeka I. C. A.

2
 

1Department of Industrial Mathematics and Applied Statistics, Ebonyi State University Abakaliki, Nigeria 
2Department of Applied Statistics, Nnamdi Azikiwe University, Awka Nigeria 

Email address: 
uzomaokey@ymail.com(Okeh UM) 

To cite this article: 
Okeh UM, Oyeka I.C.A.. Estimating the Fisher’s Scoring Matrix Formula from Logistic Model. American Journal of Theoretical and 

Applied Statistics. Vol. 2, No. 6, 2013, pp. 221-227. doi: 10.11648/j.ajtas.20130206.19 

 

Abstract: This paper proposes a matrix approach to estimating parameters of logistic regression with a view to 

estimating the effects of risk factors of gestational diabetic mellitus (GDM). The proposed method of maximum likelihood 

estimation (MLE) unlike other methods of estimating parameters of non-linear regression is simpler and convergence of 

parameters is quicker. The odds ratio obtained from the logistic regression were used to interpret the effects of these risk 

factors on GDM where obesity and F.H as risk factors, were positively associated with GDM. The proposed method was 

seen to compare favorably with other known methods.  

Keywords: GDM, Logistic Regression, Dichotomous, Fisher Scoring, Newton-Raphson, Risk factors 

 

1. Introduction 

The constant evolution of medicine over the last two 

decades has meant that statistics has had to develop 

methods to solve the new problems that have appeared and 

has come to play a central part in methods of diagnosis of 

diseases. A diagnostic method consists of the application of 

a test with a group of patients in order to obtain a 

provisional diagnosis regarding the presence or the absence 

of a particular disease. When the result of the diagnostic 

test is dichotomous, the accuracy of the test is measured in 

terms of its sensitivity and specificity. In this work, logistic 

regression has been proposed for the purpose of estimating 

the effects of various predictors on some binary outcome of 

interest. Here logistic regression regresses a dichotomous 

dependent variable on a set of independent variables as a 

way of knowing the effects of these independent variables 

(Hosmer and Lemeshow, 2000).  

We therefore here propose to develop a matrix approach 

for solving a system of nonlinear equations with P+1 

unknown parameters. These methods will be applied in 

estimating the effects of risk factors on the occurrence of 

gestational diabetic mellitus (GDM). The developed 

method will be illustrated using data on gestational diabetic 

mellitus (GDM) and have been shown to compare 

favorably with other existing methods in terms of efficiency.  

We here intend to apply a Fisher Scoring method of 

maximum likelihood estimation (MLE) of parameters by 

adopting the matrix approach to solving systems of non-

linear equations with the major purpose of estimating the 

effects of risk factors on the outcome of an event (Knight, 

2000; Schworer and Hovey, 2004). These methods are 

illustrated using data from pregnant women at risk for 

gestational diabetic mellitus (GDM)[ –a type of diabetes 

mellitus defined as glucose intolerance of varying degree of 

severity with onset or first recognition during pregnancy 

(Metzger and Coustan, 1998; Setji et al, 2005)] and are 

shown to compare favorably with other existing methods. 

2. The Proposed Method 

Given that the general form of logistic model is   
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By logit transformation, we have from Equation 1 that   
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We evaluate Equation 2 to obtain 1
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Similarly, 
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3. Obtaining Parameters of Non-Linear 

Equations from Binomial 

Distribution Using Maximum 

Likelihood Estimation (Mle) 

We here estimate the P +1 unknown parameters β  using 

MLE according to Czepiel (http://czep.net/contact.html)  as: 
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Where β  is incorporated as a regression coefficient in 

the general form for binary logistic model. The joint PDF in 

Equation 5 expresses the values of Y as a function of 

known, fixed values for β . Meanwhile, the likelihood 

function has the same form as the PDF, except that the 

parameters of the function are reversed: the likelihood 

function expresses the values of β  in terms of known, 

fixed values for Y.Thus, 
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We here find the maximum likelihood estimates which 

are the values for β  required for computing the first and 

second derivatives of the likelihood function. We simplify 

the likelihood equation instead of the difficult task of 

differentiating with respect to β . Since the factorial terms 

do not contain any of the iπ , there are therefore constants 

and can be ignored. Therefore, the equation to be 

maximized can be written as:  
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Substituting Equation 3 for the first term and Equation 4 

for the second term, to obtain:  
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Equation 9 is the actual likelihood function to maximize. 

We here simplify Equation 9 further by taking its log. Since 

the logarithm is a monotonic function, any maximum of the 

likelihood function will also be a maximum of the log 

likelihood function and vice versa. Thus, taking the natural 

log of Equation 9 yields the log likelihood function: 
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In differentiating Equation 10, note that 
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Therefore 
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The maximum likelihood estimates for β  can be found 

by setting each of the P + 1 equations in Equation 12 equal 

to zero and solving for each kβ ′ . Each such solution, if any 

exists, specifies a critical point {either a maximum or a 

minimum. The critical point will be a maximum if the 

matrix of second partial derivatives (Hessian matrix) is 

negative definite; that is, if every element on the diagonal 

of the matrix is less than zero (Glub and Van,1996). The 

Hessian matrix also forms the variance-covariance matrix 

of the parameter estimates. It results from taking the second 

derivative of Equation 12. The general form of the matrix 

of second partial derivatives (Hessian matrix) is 
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To solve Equation 13 we will make use for exponential 

functions and the rule for quotient of two functions so as to 

obtain  
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while 1i iandπ π−  are clearly defined. Thus, Equation 

13 can now be written as: 
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3. Newton-Raphson Iteration Procedure  

In finding the roots of Equation 12 using Newton-

Raphson method, we generalize the method to a system of 

P+1 equations. This is done by expressing each step of the 

Newton-Raphson (NR) algorithm through 

letting
(0)old orβ β  represent the vector of initial 

approximations for each kβ so that the result of this 

algorithm in matrix notation gives: 

1
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Substituting the values of ( ) ( )l and lβ β′ ′′  above 

simplifies the equation to a matrix form given as  
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1( )oldWhere Z X W Yβ µ−= + − is a vector and W is the 

diagonal weight vector with entries (1 )i iπ π− . 

The last equation is called the weighted least square 

regression which finds the best least-squares solution to the 

equation. The equation is called recursive weighted least 

squares because at each step, the weight vector W keeps 

changing (since the ' sβ are changing). 

Now, Equations 16 and 17 can be written: 

1
(1) ( 0 ) . ( )T TX W X X Yβ β µ

−
 = + −                    (18) 

Continue applying Equation 18 until there is essentially 

no change between the elements of β  from one iteration to 

the next. At that point, the maximum likelihood estimates 

are said to have converged, and Equation 17 will hold the 

variance-covariance matrix of the estimates. Because the 

estimation algorithm for the parameter of the logistic 

regression model is iterative, parameter estimates based on 

small samples way fail to converge, or converge to local 

rather than global, stationary points. This informed the 

application of large sample in this study. This iterative 

procedure is handled by SAS software in this work. 

4. Newton-Raphson Optimization/ 

Algorithm  

Having obtained the two derivatives of the log likelihood 

function, we now establish the general form for Newton-

Raphson  approach which is an iterative algorithm method 

for obtaining the roots of non-linear equations. It converges 

to a unique maximum of the likelihood function (See 
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Czepiel (http://czep.net/contact.html;Lambers,2009). The 

algorithm involved are as follows: 

1. Start with an initial guess of the solution (parameters) 

given as (0)β  

2. Approximate the function to be maximized in the 

neighborhood of the initial (current) guess by a second 

degree polynomial. Eg. Let 
( 0 )

(1 ) ( 0 )

( 0 )

( )
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( )

f
n

f

ββ β
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= − =
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where given ( )f β ,its 

derivative is ( )f β′ . 

3. Find the maximum of the polynomial to get better 

guesses for the parameters 

4. Using new estimates go back to step 2 and repeat until 

convergence 

We therefore generalize Newton's method to a system of 

P+1 equations so as to obtain the roots. This is written 

according to Lauritzen (2009) by letting (0)β  represent the 

vector of initial approximations for each
k

β , 

as:
1
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−

′′ ′ = + −   

( 0 ) ( 0 )
( ) ( )W h e re l a n d lβ β′ ′′ represents the first and 

second derivatives of the log likelihood function while 
(0)β represents the initial guess parameter while (1)β is the 

new estimate 

5. Matrix Form for Newton-Raphson 

Algorithm 

We first transform the results of ( ) ( )l and lβ β′ ′′ to a 

matrix form 

Let µ  be a column vector of length N with elements 

.i in π  Therefore, Equation 19 becomes 
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( )i i iw h e r e n a n d X yµ π µ′= −   is the 

gradient of the log likelihood in matrix form. 

Also, let W be a square diagonal matrix 

( )1 1P P+ × +  of order N, with elements (1 )i i in π π−  

on the diagonal and zeros elsewhere. Again, transforming 

the second derivative to matrix form gives 

( )l X W Xβ′′ ′= −                                   (21) 

Where (1 )i i iW n π π= −  

Therefore, according to Lauritzen (2009), the Newton-

Raphson method in matrix form is written as: 
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Continue applying the general form for Newton-Raphson 

method until there is essentially no change between the 

elements of β  from one iteration to the next. At that point, 

the maximum likelihood estimates are said to have 

converged. Because the estimation algorithm for the 

parameter of the logistic regression model is iterative, 

parameter estimates based on small samples may fail to 

converge. This informed the application of large sample in 

this study. Another problem with the Newton-Raphson 

method is its lack of stability. When the initial value 0β  is 

far from β , it might wildly oscillate and not converge at 

all (Lauritzen,2009;Lambers,2009). 

6. Fisher Scoring 

This is a similar method to Newton-Raphson but 

modified to overcome the convergence problem of the 

Newton-Raphson method (Farbod et al,2010). It is given by 
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                 (24) 

Whereby given the initial estimate (0)β , both derivatives 

are evaluated at (0)β and the algorithm updates them to (1)B , 

so that the expectation is evaluated as if (0)β were the true 

parameter values. Secondly, (0)β is then replaced by 

(1)β and the updating is repeated until convergence. In 

subsequent steps where there exists 
(2) (3) ( ), ,...., kβ β β , 

the Hessain matrices of (2) (3) ( ), ,...., kβ β β are replaced by 

their expectations. This is actually what distinguishes it 

from the Newton-Raphson method. In Fisher Scoring 

method, the use of ( )E H β    rather than ( )H β has two 

advantages over the Newton-Raphson method. First 

because 
2

( ) ( ) ( )

k k k k

l l l
E E

β β β
β β β β′ ′

     ∂ ∂ ∂= −     ∂ ∂ ∂ ∂      
 we need 

only calculate first, rather than second, derivatives of log 

likelihood function. A second advantage is 

that ( )E H β    is guaranteed to be positive–definite, thus 

eliminating the possible non-convergence problems of the 

Newton-Raphson method. The result obtained in Equation 

24 is actually used to obtain the roots of the non-linear 

equation from where the odds ratio used to interpret the 

effects of risk factors of GDM where estimated. 

7. Illustrative Example 

Since GDM is a dichotomous dependent variable such as 

having present and absent, it is coded as 0 or 1 and its 
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independent variables considered are Age, Category/level 

of pregnant women, Systolic Hypertension, Obesity/BMI, 

Family history of diabetes. There are also categorical and 

are coded between 0 and 1. 

Table 1. Distribution of patients by GDM and risk factors including; Age, 

Categories of women, Obesity, Systolic Hypertension, F.H, for Overall 

Sample 

Variable GDM Total 

 Coding 0 1  

Age 0 268 48 316 

 1 699 99 798 

Categories of women 0 458 36 494 

 1 509 111 620 

Obesity 0 407 53 460 

 1 560 94 654 

Systolic Hypertension 0 424 80 504 

 1 543 67 610 

FH 0 561 69 630 

 1 439 45 484 

8. Results of Analysis on the Estimation 

of Effect of Risk Factors for GDM 

Contingency tables were constructed and appropriate 

tests were applied including chi-square, as well as the 

multiple logistic regression model. The O.R was calculated 

to describe the association of risk factors with response 

variable GDM. Women at <24weeks of gestation and those 

at greater than or equal to 24 weeks of gestation were 

entered separately. In overall sample analysis, obesity and 

family history of diabetes were positively associated with 

GDM. The risk factor, FH was positively associated with 

GDM and significant. 

9. Univariate Analysis 

In this section the association of every risk factor was 

tested with GDM. For this purpose χ
2 

test was applied. It 

was found that the risk factors obesity and F.H were 

significantly associated with GDM. Obesity has the largest 

phi/creamer’s V value (0.273). So it was highly associated 

with GDM among all the significant risk factors. 

Table 2. Chi-square analysis of covariates showing significance after comparison with p and phi/creamer-value for Overall Sample 

Variable  
2χ  Df P-value Result Phi or Creamer’s V value 

Age 1.350 1 0.245 N.S –0.037/0.037 

Categories of women  0.451 1 0.502 N.S 0.021 

Obesity 74.34 1 0.000 S 0.273 

Systolic Hypertension 1.166 2 0.558 N.S 0.034 

Family History 58.357 1 0.000 S 0.242 

Table 3. Results of fitting the Multiple Logistic Regression Model, including O.R and 95% C.I by using stepwise logistic procedure for overall sample 

 Confidence interval 

Variable β̂  SE( β̂ ) Wald Df P-value Odds ratio LCL UCL 

Obesity 1.104 0.142 60.597 1 0.000 3.017 2.285 3.984 

FH 0.912 0.139 43.170 1 0.000 2.489 1.896 3.267 

Constant –0.709 0.147 23.145 1 0.000 0.492   

 

Two risk factors; Obesity and F.H were significant 

because for all the above variables p-value was less than 

0.05. The reference group for obesity was taken as non-

obese women. The O.R for obesity was 3.017, which shows 

that an obese pregnant woman has 3.017 times more chance 

of getting a significant GDM as compared to non-obese 

pregnant woman keeping all other factors constant. As the 

O.R for obesity was greater than 1 and the 95% confidence 

interval for obesity did not include 1 therefore obesity has a 

positive association with GDM and was statistically 

significant. The reference group for F.H was taken from 

pregnant women with absent of F.H. The O.R for F.H was 

2.489, which means that a pregnant women in Ebonyi State 

with positive F.H has 2.489 times more chance of getting a 

significant GDM as compared to a pregnant women in 

which F.H of diabetes was absent. Therefore F.H was 

significantly different from reference group and was 

positively associated with GDM .  

In the light of the above analysis for overall sample since 

it turns out that two risk factors obesity, and F.H were 

significant, that means empirical findings confirm concept 

and theory of risk factors. So clinicians and public health 

personal should take appropriate measures to control these 

risk factors and prevention programs should be started 

against GDM. In the remaining three risk factors: age, 

category of women and systolic Hypertension, empirical 

findings do not confirm the concept and theories of risk 

factors. The theme of every study is always started with 
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past literature and studies done by experts. According to the 

literature, these three variables were also the risk factors of 

GDM in different parts of the world. The factor, category of 

women was in fact significant in the overall sample 

analysis but it was excluded from the study because it was 

insignificant when its association was checked with GDM 

by using 2 × 2 chi-square table. Moreover because it is also 

not a significant factor due to the reason that in Ebonyi 

State, there is no discrimination in the category of pregnant 

women affected by this disease and ratio of those at 2
nd

 and 

3
rd

 trimesters (≥24 weeks of gestational age) is little higher 

than 1
st
 trimester (<24 weeks of gestational age) as in this 

study. In the factor age, only 24.7% pregnant women were 

less than 30 years and 75.3% were at least 30 years. 

Perhaps the reason for this disease is that it usually 

develops more often from age at least 30 years. Similarly in 

the factor such as history of GDM, although the percentage 

of the factors was very high in the descriptive analysis but 

these factors were not significant in the analytic study. The 

aim of analytic study was to draw out the main important 

significant factors and predict for the future by using 

backward elimination method. This means that it discarded 

the less important factors and only included the much 

important risk factors in the model. The reason for 

insignificant of these factors was that the risk factors of any 

disease cannot absolutely be demonstrated to be correct in 

testing the hypothesis and there could be other factors that 

may interact with the risk factors under study, which will 

result in rejecting hypothesis. These factors may be related 

to genetic, immune response and environment. That was 

the reason of different insignificant factors in overall 

sample. 

In the overall sample analysis, the main effect factors; 

category of women, age, obesity and F.H were significant 

risk factors. Besides the independent factors, age was 

interacted with category of women (P = 0.005), Similarly 

the factor, obesity was interacted with systolic 

Hypertension (P = 0.008). The odd ratio for category of 

women is 0.365 and odd ratio for age is 0.286 which 

indicates that women at <24 weeks of gestational age and 

number of women less than 30 years of age do not have the 

likelihood of having the disease. Obese (O.R = 6.582, P = 

0.000) and F.H of diabetes (O.R = 2.679, P = 0.000) 

indicated that obese persons have 6.582 times of chances of 

having GDM as compared to non-obese women while the 

pregnant women having diabetes in their family have 2.679 

times of developing disease as compared to that pregnant 

women in which F.H of diabetes was absent. The 

interaction of age with category of women (P = 0.005) were 

the significant factors. Obesity was also significant when It 

was interacted with history of GDM (P = 0.008), since 

obesity has “O.R” = 6.582, (P = 0.000) in the main effects. 

Some of these interaction terms were very important while 

the others were not statistically significant or explaining no 

biological relationship for interpretation. For example in 

the main effect model age and category of women showed 

insignificant effect but their interaction showed significant 

effect with odd ratio greater than 1. Similarly systolic 

Hypertension and obesity when interact with each other 

gave misleading interpretation with O.R = 0.592. 

10. Summary and Conclusions  

As in this study; emphasis is on prevalence of GDM, 

pregnant women from thirty years of gestational age, 

greater number of women at least 24 weeks of gestational 

age than those from 24 weeks of gestational age, obesity 

and F.H suggests that GDM is not associated to only single 

risk factor but it may be associated by more than one risk 

factor. As a rapidly expanding society problem, GDM 

requires collective efforts, which must include giving 

attention to prevention. Consistent with epidemiological 

concepts, prevention of diabetes should be focused by 

reducing the threat of incidence of the disease with the help 

of good nutritional status, physical fitness and regular 

check up for the individuals of the society; secondary early 

detection of the disease is necessary. Clinicians should 

advise pregnant women or patients especially at least 30 

years of age, having F.H of diabetes for monitoring 

adequate blood glucose level or at least urine test for 

diagnosing diabetes. Advice for measuring blood pressure 

is also very necessary. The doctors or clinicians should 

arrange staged management programmes. These 

programmes would be very beneficial and economical for 

the society. If the probability for getting GDM is high after 

clinical prediction model then clinicians should advise the 

pregnant women for controlling obesity and blood pressure, 

motivate for exercise and to use balanced diet. They should 

arrange seminars at district level. Also arrangements should 

be made on union council level for screening diabetes or 

diabetes care teams should go door to door for this purpose. 

Greater knowledge of risk factors about diabetes may help 

to plan prevention programmes for diabetes in future. 

Government of Ebonyi State and Health Ministries with the 

collaboration of W.H.O. should arrange the maximum 

number of seminars and conferences on diabetes. To 

educate and aware the people against diabetes, media 

should play its significant role. Non Government 

Organizations (N.G.O’s) can also play their role with the 

help of well- trained health care team, educating both 

patients and general public with the consequences and 

complications of this chronic disease. In rural areas special 

arrangements should be made for educating the people 

about balance diet and about this disease. Further studies 

are needed to specify the change associated with 

psychosocial problems in Ebonyi State and to study the 

genetic components of individually as well as collectively 

effect of those risk factors, which are associated to GDM. 
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