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Abstract: This paper involves an important statistical problem concerning forecasting in regression models in time series 

processes. It is well known that the most famous method of estimating and forecasting is the Ordinary Least Squares (OLS). 

OLS may be not the optimal in this context. So over the years many specialized estimation techniques have been developed, 

for example Generalized Least Squares (GLS). We are comparing the forecasting based on some estimators with the 

prediction using the GLS estimate. This comparison will be used by what is known as measures of forecast accuracy. We 

conduct an extensive computer simulation time series data, to make comparison among these methods. The similar 

forecasting criteria were developed and evaluated for the real data set on daily closing price in the Palestinian market index 

(Alquds Index). The data consists of 164 monthly observations and obtained from the website of the Palestine Stock 

Exchange. The main finding is that, for forecasting purposes there is not much gained in trying to identifying the exact 

order and form of the auto-correlated disturbances by using GLS estimation method. In addition, we noticed that the 

accuracy of forecasting using GLS method does not differ substantially than the other methods as Maximum Likelihood 

Estimation (MLE), Minimize Conditional Sum of Squares (CSS) and the combination of these two methods. Moreover, for 

parameter estimation, the GLS is nearly as efficient as the exact parameter estimation. On the other hand, the Ordinary 

Least Squares (OLS) method performs much less efficient than the other estimation methods and producing poor 

forecasting accuracy.  

Keywords: Generalized Least Squares, Ordinary Least Squares, Maximum Likelihood, Forecasting Accuracy, 

Simulation 

 

1. Introduction 

Comparison of estimators and forecasting in linear 

regression models with autocorrelated disturbances is 

inspired by problems, which arise in meteorology and 

economics. It is well known that the most famous method 

of estimating and forecasting is the Ordinary Least Squares 

(OLS), it is maybe not the optimal in this context. So over 

the years many specialized estimation techniques have been 

developed, for example Generalized Least Squares (GLS). 

These methods are more complicated than OLS and are less 

understood. We are comparing the prediction based on 

some estimators with the prediction using the GLS estimate. 

This comparison will be used by what is known as 

measures of forecast accuracy. 

This paper aims to study the GLS method for parameter 

estimation in the regression models with autocorrelated 

disturbances. Comparison of GLS for estimation with other 

well known methods based on forecasts criterion is 

discussed. 

In this section we introduce some related studies and 

recall the most important findings. Shittu  and Asemota 

(2009) were compared the performance of model order 

determination criteria in terms of selecting the correct order 

of an autoregressive model using the simulation method in 

small and large samples. The criteria considered are the 

Akaike information criterion (AIC); Bayesian information 

criterion (BIC), and the Hannan Quinn criterion (HQ). The 

results shows that BIC performs best in terms of selecting 

the correct order of an Autoregressive model for small 
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samples irrespective of the AR structure, HQ criteria can be 

said to perform best in large sample. Even though the AIC 

has the least performance among the criteria considered, it 

appears to be the best in terms of the closeness of the 

selected order to the true value. 

Ojo and Olatayo (2009) were compared subset 

Autoregressive Integrated Moving Average (ARIMA) 

models, with full ARIMA models. They used residual 

variance, AIC and BIC, to determine the performance of 

the models. Results revealed that the residual variance 

attached to the subset autoregressive integrated moving 

average models is smaller than the residual variance 

attached to the full autoregressive integrated moving 

average models. Subset autoregressive integrated moving 

average models performed better than the full 

autoregressive integrated moving average models. 

Lee and Lund (2004) were proposed the properties of 

OLS and GLS estimators in a simple linear regression with 

stationary autocorrelated errors. Explicit expressions for the 

variances of the regression parameter estimators are 

derived for some common time series autocorrelation 

structures, including a first-order autoregression and 

general moving averages. Applications of the results 

include confidence intervals and an example where the 

variance of the trend slope estimator does not increase with 

increasing autocorrelation. 

Koreisha and Fang (2004) were studied and described a 

new procedure for generating forecasts for regression 

models with serial correlation based on OLS. From a large 

simulation study they found that for finite samples the 

predictive efficiency of their two-step linear approach is 

higher than that of OLS for short and medium horizon, and 

very comparable to that of GLS based on ( )AR pɶ  

corrections with p T 2=ɶ , where T is number of 

observation, which is also known to be very similar to the 

GLS estimation procedure when the error covariance 

matrix Ω  will be estimated from data. For longer horizons 

OLS yields forecasts that are as efficient as those generated 

by GLS approaches and the two-step procedure for 

generating forecasts for regression models with serial 

correlation based exclusively on ordinary least squares 

(2SOLS) estimation. 

Safi (2004) discussed the comparison of efficiency of the 

OLS estimation to alternative procedures such as GLS and 

estimated GLS (EGLS) estimators in the presence of first 

and second order autoregressive disturbances. The most 

important findings that the relative efficiency of the OLS 

estimator as compared to the GLS estimator decreases with 

increasing values of ρ , he found that the efficiency of the 

OLS estimator for estimating an intercept appears to be 

nearly as efficient as the GLS estimator for |ρ| ≤.7 for 

relatively small and moderate sample sizes. However for 

large sample size, OLS appears to be nearly as efficient as 

the GLS estimator for the additional values of ρ = ±.9. And 

The OLS estimator may often be better than assuming 

another incorrect truncation of the actual process. In 

addition, it is sometimes better to ignore the problem 

altogether and use OLS rather than to incorrectly assume 

the process is AR (1). 

Findley (2003) studded properties of forecast errors and 

estimates of misspecified ARIMA and intermediate 

memory models and the Optimality of GLS for One-Step-

Ahead Forecasting. Both OLS and GLS estimates of the 

mean function are considered. He showed that GLS has an 

optimal one-step-ahead forecasting property relative to 

OLS when the model omits a regression variable of the true 

mean function that is asymptotically correlated with a 

modeled regression variable. Some inherent ambiguity in 

the concept of bias for regression coefficient estimators in 

this situation is discussed. 

The goals of this paper can be split into three main issues. 

Firstly, study the forecasting behavior using GLS method in 

regression models with auto-correlated disturbances, and 

compare the forecast accuracy with other estimation 

methods. Secondly, evaluate the forecasting for the real 

data set on Alquds Index for illustrative purposes, and 

finally conducting exhaustive simulation study setup for 

examining the accuracy of our findings. 

This paper is organized as follows: Section 2 introduces 

model estimation by MLE, OLS, and GLS. In section 3, a 

case study on Palestinian Al-Quds index stock data is 

analyzed. Section 4 focuses on forecasting evaluation and 

present the comparisons of estimation methods for the real 

and simulated data. Section 5 summaries the results and 

offers suggestions for future research for using GLS to 

generate forecasts in regression models with auto-

correlated disturbances. 

2. Model Estimation 

Building time series models involves three basic steps, 

model identification, model estimation and model 

diagnostics. In this section, we introduce the model 

estimation which is relevant to the purpose of this paper. 

We consider, Maximum Likelihood estimation, Least 

Squares Estimation, and GLS Estimation. 

2.1. Maximum Likelihood Estimation 

Basically, an ARMA  model combines the ideas of 

autoregressive AR  and moving average MA  models into 

a compact form. A mixed autoregressive moving average 

model with p  autoregressive terms and q moving average 

terms is abbreviated ( , )ARMA p q and may be written as, 

Cryer and Chan (2008). 

1 1 2 2 1 1 2 2t t t p t p t t t q t q
X X X Xφ φ φ ε θ ε θ ε θ ε− − − − − −= + + + + + + + +⋯ ⋯  

When the orders p and q of ARMA(p,q) model are known, estimates of the siφ  and sjθ can be found when the data 
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being observations from a Gaussian ARMA  model. Even 

if { }tX  is not Gaussian, the Gaussian likelihood still is a 

reasonable measure of goodness of fit of the model, so 

maximizing it is sensible. Also, the asymptotic distribution 

of maximum likelihood estimators is the same whether the 

white noise innovations tε  (and so the process itself) are 

Normal or not. Suppose our observed data 1,..., nx x  are 

placed in the data vector ( )1
,...,

n
x x ′  (after appropriate 

differencing and mean-correction) are modeled by a 

stationary zero-mean Gaussian ( , )ARMA p q  process 

{ }tX  with parameters 1 1( ,..., ) ( ,... )p qφ φ θ θφ θ′ ′=  , =  and 

2σ . Recall that 
2σ  is the variance of the WN  variables in 

the ARMA  process. The covariance matrix of 

1( ,..., )n nx xX ′=  

( ) ( )2
, ,nE XX σφ θ= Γ′  

say, is a symmetric positive definite n n× matrix, Consists 

from the covariances , , 1,...,i j i j nγ −  = , themselves 

functions of the model parameters. Because the 
t

X  have a 

joint n -variate normal distribution the likelihood based on 

data 
n

x  is 

( ) ( )
1
222 11

, , ; 2 exp
2

n

n n n nL x x xφ θ σ π −− − ′= Γ − Γ 
 

 

and the log-likelihood up to a constant term 

( )2 11 1
, , ; log

2 2
n n n nx x xφ θ σ −′= − Γ − Γℓ  

In principle the maximum likelihood estimates can be 

obtained from this by numerical maximization. In practice 

however, if n  is large, direct calculation of 1

n

−Γ and nΓ  

could be a problem. Fortunately algorithms are available to 

avoid the difficulty. What is needed for a numerical 

maximization procedure is the ability to evaluate the log-

likelihood ℓ  quickly at specified values of the parameters. 

Given this ability a good maximization routine should be 

able to iterate efficiently towards the parameter values at 

which ℓ  is largest. Thus maximization depends on the 

ability to evaluate ℓ  easily at any given set of parameter 

values (See for example Abraham and Ledolter (2005). 

One method of evaluation is to build up ℓ , starting as 

though there were very few observations, and successively 

calculating the changes as new observations are taken into 

account. To see how this works we need some further 

notation. For each 1,2,...j =  Let ˆ
j

X  denote the minimum 

variance estimate of 
jX  based on linear combinations of 

observations made before time j , 
1 2 1, ,...,j jX X X− − , 

These ˆ 's
j

X  are called one-step-ahead predictors. They are 

linear combinations of earlier observations, with 

coefficients which are functions of the covariances for the 

particular model we are considering. These coefficients can 

be expressed in terms of the model parameters, but we will 

not need them explicitly for the current discussion. Also let 

jU  denote the difference ˆ
j j

X X− , called the innovation 

at time j .A property of the 'sjU  is that they have zero 

expectation and are uncorrelated with each other. (This 

follows from the easily-proved fact that ˆ
j

X  is the 

conditional expectation of 
jX  given all values observed 

before j .) Finally let ˆ
nX  and 

n
U  denote the vectors of 

predictors ( )1
ˆ ˆ,...,

n
X X  and innovations ( )1,..., nU U  

respectively.
 

Since ˆ
j

X  is a function only of earlier 's
i

X  and is linear 

in them, we can write  

ˆ
n n n n n= − =U X X A X  

where 
n

A  is a matrix with 1's  along its diagonal and 

zeroes above the diagonal, the values below the diagonal 

being the coefficients determining the ˆ
j

X . Being triangular 

with positive diagonal entries, 
n

A  is non-singular, and so, 

writing 1

n n

− =A C , we have 

( )ˆ
n n n n= −X C X X  

Like 
n

A , the inverse 
n

C  is also triangular with 1's  

along its diagonal and zeroes above it. Also, since the 

components of ˆ
n n−X X  are uncorrelated, the variance-

covariance matrix of this vector, 
n

D  say, 

( ) ( )ˆ ˆ
n n n n nE

′− − =X X X X D
 

must be diagonal, 
0 1

( ,..., )
n n

diag υ υ −=D , where 

( )1j jVar Uυ − =  is the innovation variance at time j . 

From the above 

( ) ( )
( ) ( )

( )

1

2

1 1

ˆ ˆ( )( )

ˆ ˆ

ˆ

n n n n n n n n n n n n

n n n n n

n
j j

j j

E E

X X

υ

−

= −

′ ′ ′ ′= = − − =

′= − −

−
= ∑

Γ X X C X X X X C C D C

X X D X X
   (2.1) 

and 

2

0 1....... ,n n n n n n nυ υ −′= = =C D C C DΓ  

since 1n =C because of 's
n

C  unit-diagonal/triangular 

structure, Cochrane (2005).. 

Thus the log-likelihood becomes 
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2

2

1

1 1 1

ˆ( )1 1
( , , ; ) log

2 2

n n
j j

j

j j j

x X
xφ θ σ υ

υ−
= = −

−
= − −∑ ∑ℓ     (2.2) 

The great advantage of this expression is that the 'sjυ  

and ˆ 's
j

X  can be calculated very efficiently by recursion 

using the Innovations Algorithm The procedure therefore 

gives a highly effective route to the maximum likelihood 

estimators. 

In fact the Innovations Algorithm works for any process, 

whether of ARMA  form or not, stationary or not. For an 

ARMA  model in particular it is found that the innovation 

variances jυ  all have the form 

2

j jwυ σ=  

where the 
jw  depend on φ  and θ  but not on 

2σ . The 

coefficients defining the one-step-ahead predictors ˆ
j

X  in 

terms of earlier observations also do not depend on 
2σ . 

The log-likelihood therefore becomes 

2

2 2

1 2
1 1 1

ˆ( )1 1
( , , ; ) log log

2 2 2

n n
j j

j

j j j

x Xn
x w

w
φ θ σ σ

σ−
= = −

−
= − − −∑ ∑ℓ   (2.3) 

and if we maximize this with respect to 
2σ  (by 

differentiating with respect to 
2σ , setting the derivative 

equal to 0 and solving the resulting equation), we find that 

( )2

2

1 1

ˆ ˆˆ ,( )1
ˆ

n
j j

j j

Sx X

n w n

φ θ
σ

= −

−
= =∑               (2.4) 

say, giving the maximum likelihood estimate of 
2σ  in 

terms of a sum of squares S  depending on the estimates of 

the other parameters. If this expression for 
2σ̂  is 

substituted back into the log-likelihood, thereby eliminating 
2σ , we find that φ̂  and θ̂  must be the values of φ  and θ  

maximizing 

( )2

1

1

,1
( , , ; ) log log

2 2

n

j

j

Sn
x w

n

φ θ
φ θ σ −

=

= − −∑ℓ  

that is, minimizing 

( )1

1

1

,
log log

n

j

j

S
n w

n

φ θ−
−

=

+∑                   (2.5) 

Minimization of ( ),S φ θ  alone would be a form of least 

squares estimation. From (2.5) we see that if 

1

1

1

log
n

j

j

n w
−

−
=
∑  is small or varies little with φ  and θ  the 

resulting estimates are likely to be close to the maximum 

likelihood estimates. 

In practice (2.4) is little used as an estimate of 
2σ . 

Instead, as for the estimation of variance in regression, the 

estimate 
( )

2

ˆ ˆ,S

n p q

φ θ
σ =  

− −
ɶ is preferred. (See for example, 

Everitt and Hothorn, 2010 and Fox, 2002). 

2.2. Least Squares Estimation 

In this section, we present the least square estimation in 

time series and regression model. 

2.2.1. The Least Squares in Time Series 

The underlying idea in the fitting of a time series model 

by least squares, by analogy with regression, is that we 

should choose parameter values which minimize the sum of 

squared differences between the observed data and their 

expected values according to the model. We present least 

squares estimation in three models, namely: AR, MA, and 

ARMA. 

For AR(1), 
1t t t

X Xφ ε−= + : Given the observations up 

to time 1j − , the expected value of 
jX  is 

1jxφ − , so it is 

reasonable to use 

2

1

2

( ) ( )
n

j j

j

S x xφ φ −
=

= −∑  

as the sum of squares to be minimized. Note that the 1j =  

term is omitted since 0x  is not available. Minimization of 

S  with respect to φ  leads to the estimate 

1

2

2

1

2

.

n

j j

j

n

j

j

x x

x

φ
−

=

−
=

=   
∑

∑
ɶ  

The same idea works in the same way for ( )AR p  

models, leaving out differences from 'sjx  with j p≤ . 

For MA (1), 
1t t t

X ε θε −= + : if the MA model is 

invertible then 

1

( )i

t t i tX Xθ ε
∞

−= − − +∑  

By analogy with the previous example and with 

regression this suggests basing a sum of squares on the 

differences 

1

( )
i

t t t iX Xε θ
∞

−
 = − − −   
 
∑  

However we cannot use these directly (infinitely many 

terms in the sums). Instead take 

2

1

( )
n

tS θ ε=∑  

and note that from the defining relation of the process we 

could find the terms here successively from 
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1 1 0

2 2 1

1n n n

X

X

X

ε θε
ε θε

ε θε −

 = −
 = −

        
 = −

⋮ ⋮
 

provided we knew 
0

ε . Not knowing 
0

ε  it's natural to 

replace it by its expectation, zero. S  calculated in this way 

is referred to as a conditional sum of squares, and the 

estimate obtained by minimizing the conditional S  is 

called the conditional least-squares estimate. 

For a general ARMA  model:  the conditional sum of 

squares can be defined much as in the MA  case,  

1 1

q p

t t i t i j t j

i j

X Xε θ ε φ− −
= =

= − −∑ ∑  

to calculate tε  from the previous ones and past data. As in 

the MA  case we can take the 'sε  on the right hand side 

to be zero for non-positive indices. As in the AR  case we 

may content ourselves with calculating the 'sε   only for 

t p>  so that we only use observed 'sX , or we might take 

'sX  with negative suffices to be zero too. Unconditional 

Least Squares means minimizing the sum of squares 

( ),S φ θ  in (2.5). As noted this is not quite the same as 

maximizing the likelihood, but will often give similar 

results. 

2.2.2. The Least Squares in Regression Model 

The regression model can be written as 

( ; )
t t t

y f ε= +x β                               (2.6) 

where ( ; )
t

f x β  is a mathematical function of the p  

independent variables 
1( , ..., )t t tpx x ′=x and unknown 

parameters 
1

( ,..., )
m

β β ′=β . Due to the random nature of 

the error terms 
t

ε , the dependent variable  
t

y itself is a 

random variable. The model in (2.6) can therefore also be 

expressed in terms of the conditional distribution of 
t

y  

given 
1

( ,..., )
t t tp

x x ′=x . The regression assumptions can be 

written as: 

1. The conditional mean, 
( | ) ( ; )

t t t
E y f=x x β

, 

depends on the independent variables t
x

 and the 

parameters 
β

, and the variance 
2

( | )t tV ar y σ=x
is 

independent of t
x

 and time. 

2. The dependent variables 
t

y  and 
t k

y −  for different 

time periods (or subjects) are uncorrelated 

[ ][ ]( ( ; ) ( ; ) 0t t k t t t k t kCov y y E y f y f− − −, ) = − − =x β x β  

3. Conditional on ,
t t

yx follows a normal distribution 

with mean ( ; )
t

f x β  and variance 
2σ , this is denoted 

by ( )2
( ; ),tN f σx β . 

Least squares estimates are minimize the sum of the 

squared deviations [ ]2

1

( ) ( ; )
n

t t

t

S y f
=

= −∑β x β  and denoted 

by β̂ . The general linear regression model Linear, 

regression models can be written as 

= +y Xβ ε                                 (2.7) 

where y  is a 1n × vector of observations on a dependent 

variable, X  is a n k× matrix of independent variables of 

full column rank, β  is a 1k × vector of parameters to be 

estimated, and ε  is a 1n ×  vector of disturbances. In 

matrix notation the least squares criterion can be expressed 

as minimizing 

2

1

( ) ( ) ( ) ( )
n

t t

t

S y x β
=

′ ′= − = − −∑β y Xβ y Xβ  

The minimization of ( )S β  leads to the least squares 

estimator β̂ , which satisfies the 1p +  equations 

ˆ( )′ ′=X X β X y                               (2.8) 

These are referred to as the normal equations. Since we 

have assumed that the design matrix X  is of full column 

rank, the inverse of ′X X  can be calculated. The solution 

of the normal equations is then given by 

1ˆ ( )−′ ′=β X X X y                             (2.9) 

The ( 1) ( 1)p p+ × +  covariance matrix of β̂  is given by 

2 1ˆ( ) ( )V σ −′=β X X                         (2.10) 

Consider a standard linear model (2.7) with all the 

assumptions of the classical linear model except the 

assumption of constant variance, non-autocorrelated error 

terms. Replace this assumption with 

[ ] 2( ) ,Var E εε σ′= = Ωε  

where Ω  is an n n×  symmetric and invertible matrix. 

Each element 
ijw  of Ω  is proportional to the covariance 

between the errors 
i

ε  and 
i

ε  of observations i  and j . 

Each diagonal element 
ii

w  is proportional to the variance 

of
i

ε . When the variance and covariance of the unobserved 

factors takes this form then the formula for estimating the 

variance covariance matrix of β̂  is  

( ) ( ) ( )2ˆVar σ ′ ′ ′= -1
β X X X ΩX X X           (2.11) 
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Unfortunately we do not usually know Ω  unless we put 

a specific structure on the process that determine the 

unobservable factors in the model ε . In general, It is 

impossible to estimate Ω  without restrictions on its 

structure. Ω has 
( )1

2

n n +
 unique parameters, but we only 

have n observations and the number of parameters to be 

estimated, including those in β̂ , must be less than the 

number of observations. 

For Consistent estimation of the variance covariance 

matrix, there are ways to estimate 
2σ′ ′ ′X εε X = X ΩX

which is a k k× matrix of all the cross products of the 

error terms and the regressors. There are various forms 

designed to deal with different situations. In general, what’s 

required is an estimate of the form
1

ˆ ˆ
i j i j

i j

x x
n

ε ε ′∑∑ . But 

this usually restricted in some way, e.g. the The Huber-

White estimate is 
21
î i j

i

x x
n

ε ′∑  and deals with 

heteroskedasticity only. The Newey-West estimator extends 

this to serial correlation. Another popular choice is for 

‘clustered’ standard errors, which may be useful 

approximations with spatial data. 

2.3. Generalized Least Squares Estimation 

Regressors are assumed to be non–stochastic, i.e. fixed 

in repeated sampling, independent and uncorrelated with 

the error terms in the classical linear regression model. 

These assumptions are not always satisfied especially in 

time series. OLS is not the most efficient estimator here. 

We can gain precision in least-squares estimates by 

weighting observations with ‘lower’ variance more heavily 

than those with ‘higher’ variance, so that the weighted error 

variance covariance matrix is of the standard form. The 

intuition is that we weight the estimator so that it places 

greater emphasis on observations for which the observable 

explanatory variables do a better job of explaining the 

dependent variable. This means we need to devise a n n×  

weighting matrix C such that: 

[ ] 2( )Var E σ′ ′= =Cε Cεε C I  

A matrix that does this, is a matrix C such that 
1−′ =C C Ω , which implies ′ =CΩC I . In fact, several 

such matrices C exist, so that, for convenience, we can 

assume ′=C C . To derive the form of the Best Linear 

Unbiased Estimator (BLUE) of β  for the generalized 

regression model under the assumption that  is Ω  known, 

weighting all the variables in the model gives 

= +Cy CXβ Cε . Then, the OLS estimator applied to this 

gives the GLS estimator 

( ) 1
1 1ˆGLS

−− −′ ′=β X Ω X X Ω y  

If the Ω are known then the GLS estimator ˆGLS
β  is 

BLUE, with variance covariance matrix 

( ) ( )2 1ˆGLSVar σ −′=β X Ω X . Note that this assumes that the 

parameters are homogenous across the sample, i.e. they do 

not change for different groups in the data. Weighting the 

data will then change the parameter estimate according to 

which groups are more heavily weighted. 

In practice, Ω is typically unknown so that the GLS 

estimator is maybe not available. meaning that ˆGLS
β is non-

operational, and a estimated or feasible generalized least 

squares (FGLS) estimator is used. If the matrix Ω  

unknown, we can parameterize the matrix ( )=Ω Ω θ  in 

terms of a finite-dimensional parameter vector θ , and use 

the classical OLS residuals to obtain consistent estimators 

θ̂ and ˆ ˆ( )=Ω Ω θ  of θ and Ω . Then replace the unknown 

Ω  with the estimated Ω̂  in the formula for GLS, yielding 

the feasible GLS estimator, 

( ) 1
1 1ˆ ˆ ˆFGLS

−
− −′ ′=β X Ω X X Ω y  

3. Case Study: Palestinian Al-Quds 

Index Stock Data 

In this section, we consider a real data set called 

Palestinian Al-Quds index stock Data. The data is obtained 

from Palestine Exchange (PEX) web page (www.p-s-e.ps). 

We consider the closing price values for the Al-Quds Index. 

R-statistical software is used for fitting ARIMA model for 

the time series. 

3.1. Data Description 

We consider the monthly closing price values for the Al-

Quds Index in Palestine, from September 1997 to April 

2011. The data is taken at the end of last trading every 

month, thus we have (164) observation. The closing price 

for the Al-Quds Index ranges between 97.01 and 1295.08 

with mean 376.17 and standard deviation 233.95. 

3.2. Data Processing 

The Ljung-Box test statistic equals 157.53. This is 

referred to a chi-square distribution with one degree of 

freedom. This leads to a p-value < 2.2e-16, so we reject the 

null hypothesis that the error terms are uncorrelated. In 

other words, there is strong evidence of autocorrelation in 

the residuals of this data.  

Figure 3.1 displays the time series plot. The series 

displays considerable fluctuations over time, especially 

since 2005, and a stationary model does not seem to be 

reasonable. The higher values display considerably more 

variation than the lower values.  
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Figure 3.1. Monthly series of closing value for al-quds index: Sep. 1997 to 

April 2011 

KPSS test for level stationarity is applied to the original 

series leads to a test statistic of 3.0973 and a p-value of 

0.01. With stationarity as the null hypothesis, this provides 

strong evidence supporting the nonstationarity and the 

appropriateness of taking a difference of the original series. 

The differences of the closing values for al-quds index 

are displayed in Figure 4.2. The differenced series looks 

much more stationary when compared with the original 

time series shown in Figure 4.1. On the basis of this plot, 

we might well consider a stationary model as appropriate. 

 

Figure 3.2. The Difference Series of the Monthly Closing Values for Al-

Quds Index 

KPSS test is applied to the differenced series leads to a 

test statistic of 0.0678 and a p-value of 0.10. That is, we do 

not reject the null hypothesis of Stationarity. 

3.3. Model Specification 

Both the sample ACF and PACF displayed in Figure 3.3, 

cut off after lag (1), strongly suggested an MA(1) or AR(1) 

appropriate model for the differenced series, respectively. 

Therefore, it is quite difficult to identify the MA, AR, or 

mixed model from this figure. 

 

Figure 3.3. Sample ACF and PACF for Difference of the Monthly Closing 

Values for Al-Quds Index 

The sample EACF computed on the first differences of 

the Monthly Closing Values for Al-Quds Index is shown in 

Table 3.1.  In this table, an ARMA(p,q) process will have a 

theoretical pattern of a triangle of zeroes, with the upper 

left-hand vertex corresponding to the ARMA orders. Table 

3.1 displays the schematic patterns for possibility of 

IMA(1,1), ARIMA(1,1,1), or ARIMA(2,1,2). 

Table 3.1. EACF for Difference of Monthly Closing Values for Al-Quds 

Index Series 

 MA 

A

R 

 0 1 2 3 4 5 6 7 8 9 
1

0 

1

1 

1

2 

1

3 

0 x 0 0 0 0 0 0 0 0 0 0 0 0 0 

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2 0 x 0 0 0 0 0 0 0 0 0 0 0 0 

3 x x 0 0 0 0 0 0 0 0 0 0 0 0 

4 x x 0 0 0 0 0 0 0 0 0 0 0 0 

5 x x x 0 0 0 0 0 0 0 0 0 0 0 

6 x 0 0 0 x 0 0 0 0 0 0 0 0 0 

7 x x 0 0 x x 0 0 0 0 0 0 0 0 

3.4. Model Selection 

The estimate of the series mean is not significantly 

different from zero (P-value = 0.5467). 

The three selected ARIMA models and their 

corresponding criteria are shown in Table 3.2. These 

criteria confirm the selection suggestion -IMA(1,1)- based 

on the smallest values of AIC, AICc, and BIC among the 

other ARIMA choices. 

Table 3.2. Different  criteria for suggested ARIMA models 

Models AIC AICc BIC 

IMA(1,1) 1742.84 1742.99 1752.12 

ARIMA(1,1,1) 1744.77 1745.03 1757.15 

ARIMA(2,1,2) 1747.87 1748.4 1766.43 

3.5. Model Diagnostic 

Figure 3.4 displays the time series plot of the 

standardized residuals from the IMA(1,1) model estimated 

for the Al-Quds index series time series. The model was 

fitted using maximum likelihood estimation. There are few 

residuals with magnitude larger than 2.  The standardized 

residuals don’t show clusters of volatility and seem to be 

fairly “random” with no particular patterns. 

 

Figure 3.4. Standardized Residuals of the Fitted Model from Al-Quds 

index IMA (1,1) Model 

Plot of Orginal data

Time

C
lo

s
e
 v

a
lu

e

1998 2000 2002 2004 2006 2008 2010

2
0
0

6
0
0

1
0
0
0

plot of first differences for closevalue

Time

1
s

t 
d

if
f.

c
lo

s
e

v
a

lu
e

1998 2000 2002 2004 2006 2008 2010

-2
0

0
0

2
0

0

0 5 10 15 20

-0
.2

0
.2

0
.6

1
.0

Lag

A
C

F

cvalue

5 10 15 20

-0
.2

0
.2

0
.6

1
.0

Lag

P
a
rt

ia
l 
A

C
F

Series  difftsdata1

T ime

S
ta

n
d

a
rd

iz
e

d
 R

e
s

id
u

a
ls

1998 2000 2002 2004 2006 2008 2010

-4
-2

0
2

4
6



 American Journal of Theoretical and Applied Statistics 2014; 3(1): 6-17 13 

 

 

 

Figure 3.5. Sample ACF of Residuals of the Fitted Model IMA(1,1) Model 

To check on the independence of the error terms in the 

model, we consider the sample autocorrelation function of 

the residuals. Figure 3.5 displays the sample ACF of the 

residuals from the IMA (1,1) model of the from Al-Quds 

index data. The dashed horizontal lines plotted are based on 

the large lag standard error of 2 0.156n± = ±  (n=164). 

The graph does not show statistically significant evidence 

of nonzero autocorrelation in the residuals. In other words, 

there is no evidence of autocorrelation in the residuals of 

this model. These residual autocorrelations look excellent. 

In addition to looking at residual correlations at 

individual lags, it is useful to have a test that takes into 

account their magnitudes as a group. Figure 3.6 shows the 

p-values for the Ljung-Box test statistic for a whole range 

of values of K from 1 to 20. The horizontal dashed line at 5% 

helps judge the size of the p-values. The Ljung-Box test 

statistic with K = 11 is equal to 11.7298. This is referred to 

a chi-square distribution with 10 degrees of freedom. This 

leads to a p-value of 0.3035, so we have no evidence to 

reject the null hypothesis that the error terms are 

uncorrelated. The suggested model looks to fit the 

modeling time series very well.  

 

Figure 3.6. P-values for the Ljung-Box Test for the Fitted Model 

 

Figure 3.7. Quantile-Quantile Plot and histogram of the  Residuals of the 

Fitted Model from Al-Quds index IMA (1,1) Model  

A quantile-quantile plots are an effective tool for 

assessing normality. Here we apply them to the residuals of 

the fitted model. A quantile-quantile plot of the residuals 

from the IMA(1,1) model estimated for the Al-Quds index 

series is shown in Figure 3.7. The points seem to follow the 

straight line fairly closely. This graph would not lead us to 

reject normality of the error terms in this model. In addition, 

with a few minor exceptions in the lower and upper tails, 

the histogram of the standardized residuals seems to be 

normal.  

Therefore the estimated IMA(1,1) model seems to be 

capturing the dependence structure of the difference of Al-

Quds index.  

3.5. Estimation Methods 

Using forecast package in R program, there are three 

estimation methods.  

1. "CSS-ML" minimize conditional sum-of-squares to 

find starting values then maximum likelihood (the 

default method). 

2. "ML" maximum likelihood. 

3. "CSS" minimize conditional sum-of-squares. 

In addition GLS will be used for comparison purposes. 

Table (3.3) shows the results for the four mentioned 

methods for the three selected ARIMA models, namely: 

IMA(1,1), ARIMA(1,1,1) and ARIMA(2,1,2).  
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Table 3.3. result of methods with measures of estimate  and  measures of forecast accuracy 

BIC AICC AIC 2θ  1θ  
2φ  1φ  Method 

IMA(1,1) 

1752.12 1742.99 1742.84  0.2184   ML 

1752.12 1742.99 1742.84  0.2184   CSS-ML 

NA NA NA  0.2197   CSS 

1749.85 NA 1737.53  0.22775   GLS 

ARIMA(1,1,1) 

1757.15 1745.03 1744.77  0.3173  -0.1027 ML 

1757.15 1745.03 1744.77  0.3208  -0.1063 CSS-ML 

NA NA NA  0.3220  -0.1062 CSS 

1754.92 NA 1739.56  0.2719  -0.0458 GLS 

ARIMA(2,1,2) 

1766.43 1748.4 1747.87 -0.2682 0.0395 0.250 0.1789 ML 

1766.43 1748.4 1747.87 -0.2647 0.0141 0.2407 0.2051 CSS-ML 

NA NA NA -0.264 0.0145 0.2403 0.2059 CSS 

1763.65 NA 1742.08 -0.2955 -0.0019 0.2807 0.2343 GLS 

 

Based on AIC, AICc, and BIC, the results confirm IMA 

(1,1) is the best model among the others. 

Here we see that ˆ 0.2184θ = . Noting the P-values for the 

estimate of the moving average coefficient, θ̂  (0.005) is 

significantly different from zero statistically, and 

insignificant for the intercept term intercept (0.61), 

consequently, it is  not included  in the estimated model. 

Therefore, The fitted model can be written as: 

10.2184t t tw ε ε −= −  

4. Forecasting Evaluation 

The crucial object in measuring forecast accuracy is the 

loss function. In this section we present the most widely 

statistical loss functions. Accuracy measures are usually 

defined on the forecast errors 
, ,

ˆ
t k t t k t k t

e X X+ + + = − . 

Definition 4.1. Mean Squared Error (MSE) eliminates 

the positive-negative problem by squaring the errors.  The 

result tends to place more emphasis on the larger errors and 

therefore gives a more conservative measure than the MAE. 

This approach penalizes large forecasting errors. The MSE 

is given by 

2

,

1

1 T

t k t

t

MSE e
T

+
=

= ∑                  (4.1) 

where, T is number of periods used in the calculation. 

The root mean squared error, 
2

,

1

1 T

t k t

t

RMSE e
T

+
=

= ∑ , is 

easy to interpret it is one of the most commonly used 

measures of forecast accuracy.  

4.1. Comparisons of Estimation Methods for Real Data 

We consider five estimation methods CSS-ML, ML, CSS, 

GLS, and classical OLS for the three selected ARIMA 

models, namely: IMA(1,1), ARIMA(1,1,1) and 

ARIMA(2,1,2). We compare the forecasting performance 

for GLS estimation method with the other four methods. 

Table (4.1) shows the complete results for the forecast 

accuracy criterion RMSE. We can deduce the following: 

For using the best estimation model, IMA (1, 1), GLS 

estimation method performs nearly as efficient as the other 

estimation methods. For example, the RMSE for IMA (1,1) 

using ML, CSS-ML, CSS, and GLS equal 49.8314, 

49.8314, 49.8315, and 50.9545, respectively. 

For other over estimation models, the measures of 

forecast accuracy criteria using the GLS estimation method 

do not differ substantially comparing to the other 

estimation methods. For example, the RMSE for ARIMA 

(1,1,1) using ML, CSS-ML, CSS, and GLS equal 49.8210, 

49.8210, 49.8166, and 50.9545, respectively.  

For the transformed data using the first difference, OLS 

performs as nearly as the other estimation methods. The 

RMSE equals 50.9544.  

However, for the original data, OLS performs much less 

efficient than the other estimation methods, resulting poor 

forecasting accuracy. The RMSE equals 170.174. 

Table 4.1. RMSE for Real Data  

ARIMA(2,1,2) ARIMA(1,1,1) IMA(1,1) Method 

49.6809 49.8210 49.8314 ML 

49.6810 49.8210 49.8314 CSS-ML 

49.6767 49.8166 49.8315 CSS 

50.9545 50.9545 50.9545 GLS 

50.9544 OLS* 

170.174 OLS** 

* OLS for the transformed data 

* OLS for the original data 

4.2. Comparisons of Estimation Methods for Simulated 

Data 

In this section, we consider the robustness of the four 
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estimation methods. We compare the best forecasting 

among some of the estimation methods such as CSS-ML, 

ML, CSS, GLS, and classical OLS. This simulation will be 

conducted to examine the sensitivity of the selected 

estimation methods to model forecasting. In particular, 

what is the appropriate estimation methods for selecting the 

most adequate forecasting model. This section displays the 

results of simulation study. 

Three finite sample sizes (50, 164, and 500) are 

generated from three different ARIMA models, namely: 

IMA(1,1), ARIMA(1,1,1) and ARIMA(2,1,2) with 

estimation parameters as mentioned in Table (4.2). In each 

case 1000 of simulations with 1000 replications were 

generated by R statistical software package and the value of 

RMSE were computed for each selected model, and sample 

size, and estimation method. The complete simulation 

results are presented in Table 4.2. 

For using the most appropriate estimation model, IMA 

(1,1), GLS estimation method performs nearly as efficient 

as the other estimation methods. For example, the RMSE 

for IMA (1,1) using ML, CSS-ML, CSS, and GLS for 

N=50 equal 0.973789950, 0.973789952, 0.974568426, and 

0.991164328, respectively. 

For other over estimation models, the measures of 

forecast accuracy criteria using the GLS estimation method 

does not differ substantially comparing to the other 

estimation methods. For example, the RMSE for ARIMA 

(1,1,1) using ML, CSS-ML, CSS, and GLS for N=500 

equal 0.997086593, 0.997084667, 0.996242168, and 

1.022727195, respectively.  

For the original data, OLS performs much less efficient 

than the other estimation methods, resulting poor 

forecasting accuracy. For example, when N=50 for 

IMA(1,1), the RMSE equals 6.623496357. However, For 

the transformed data using the first difference, OLS 

performs as nearly as the other estimation methods. The 

RMSE in this case equals 1.021243491.  

Table 4.2. RMSE for Simulated Data  

N=500 N=163 N=50 Method Model 

0.998298016 0.992241315 0.973789950 ML 

IMA 

(1,1) 

0.998298016 0.992241315 0.973789952 CSS-ML 

0.998351545 0.992415326 0.974568426 CSS 

1.023119426 1.014788963 0.991164328 GLS 

1.021243491 1.012996109 0.989519910 OLS* 

6.623496357 3.776981098 2.089517661 OLS** 

0.997086593 0.988588205 0.958924656 ML 

ARIMA 

(1,1,1) 

0.997084667 0.988560292 0.958697152 CSS-ML 

0.996242168 0.985638071 0.938562761 CSS 

1.022727195 1.014741181 0.992092843 GLS 

1.020507497 1.012864774 0.988605362 OLS* 

N=500 N=163 N=50 Method Model 

6.489403505 3.705580936 2.051295223 OLS** 

0.99505171 0.979896063 0.913104246 ML 

ARIMA 

(2,1,2) 

0.994940878 0.978561152 0.912136161 CSS-ML 

0.992736025 0.970016181 0.836939029 CSS 

1.027462515 1.019890774 0.995749801 GLS 

1.022514775 1.015065506 0.984947433 OLS* 

7.300410063 4.127434836 2.217033580 OLS** 

* OLS for the original data 

* OLS for the transformed data 

Definition 4.2. The efficiency of GLS estimates relative 

to that of MLE in terms of the MSE of the data, ζ̂ , is given 

by 

( )
( )

2

,

1

2

,

1

ˆ

ˆ

ˆ

k

t k t k t
GLS

i

k

t k t k t
MLE

i

X X

X X

ζ
+ +

=

+ +
=

−
=

−

∑

∑
                    (4.2) 

where k is the number of simulations. 

A ratio less than one indicates that the GLS estimates is 

more efficient than MLE, and if is close to one, then the 

GLS estimate is nearly as efficient as MLE estimates. 

Table 4.3 shows the complete simulation results of the 

ratios of the GLS estimation method relative to the other 

methods in terms of the MSE of the data, ζ̂  in (4.2). The 

table presents the results for the three sample sizes 

considered, as well as all five selected estimation method 

for each of the selected model.  

First, we see that regardless of the sample size, if the 

model is correctly specified, i.e. IMA(1,1), GLS estimation 

method performs nearly as efficiently as ML, CSS-ML, and 

CSS. For example when N=500, the relative efficiency of 

GLS to that of ML, ˆ 1.02486ζ = .  

For other over estimation models, GLS estimation 

method does not differ significantly comparing to the other 

estimation methods. For example when N=50 for ARIMA 

(1,1,1), the relative efficiency of GLS to that of ML, 
ˆ 1.03459ζ = . 

In addition, as the sample size increases, the efficiency of 

GLS mimics to that of the other estimation methods. For 

example for ARIMA (1,2,1), the relative efficiency of GLS 

to that of ML, ˆ 1.09051, 1.04082, and 1.03257ζ =  when N=50, 

163, and 500, respectively. 

To further demonstrate the efficiency of GLS, consider 

OLS for the original data for all selected sample sizes and 

all selected models. GLS is much more efficient in 

forecasting than the OLS estimation method. In other 

words, OLS for the original data performs poorly as shown 

in Table (4.3). For example, the relative efficiency of GLS 

to that of OLS when T = 50, 163, and 500 for IMA(1,1) 
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equals ζ̂ =0.47435, 0.26868, and 0.15447, respectively. 

The superiority of GLS over OLS is due to the fact that 

GLS has a smaller variance and the autocorrelated nature of 

disturbances is accounted for in the GLS. According to the 

Generalized Gauss Markov Theorem, the GLS estimator 

provides the Best Linear Unbiased Estimator (BLUE) of 

the regression coefficient.  

However, OLS for the transformed data performs nearly 

as efficiently as GLS for all selected sample sizes and all 

selected models. This result is not surprising since the 

autocorrelated nature of disturbances is accounted for in the 

transformed data. For example, the relative efficiency of 

GLS to that of OLS for transformed data when T = 50, 163, 

and 500 for IMA(1,1) equals ζ̂ =1.00166, 1.00177, and 

1.00184, respectively. 

Table 4.3. Efficiency for RMSEs of the GLS Estimators Relative to other 

Methods 

N=500 N=163 N=50 Method Model 

1.02486 1.02272 1.01784 ML 

IMA 

(1,1) 

1.02486 1.02272 1.01784 CSS-ML 

1.02481 1.02254 1.01703 CSS 

1.00184 1.00177 1.00166 OLS* 

0.15447 0.26868 0.47435 OLS** 

1.02572 1.02645 1.03459 ML 

ARIMA 

(1,1,1) 

1.02572 1.02648 1.03483 CSS-ML 

1.02658 1.02953 1.05703 CSS 

1.00218 1.00185 1.00353 OLS* 

0.15760 0.27384 0.48364 OLS** 

1.03257 1.04082 1.09051 ML 

ARIMA 

(2,1,2) 

1.03269 1.04224 1.09167 CSS-ML 

1.03498 1.05142 1.18975 CSS 

1.00484 1.00475 1.01097 OLS* 

0.14074 0.24710 0.44914 OLS** 

* OLS for the original data 

* OLS for the transformed data 

Table 4.4 shows the actual and forecasting results with 

lower and upper 95% confidence interval for the daily 

closing price Alquds Index using IMA (1,1) model. 

Table 4.4. Actual and Forecasting with lower and upper 95% confidence 

interval of IMA (1,1) model for daily closing price Alquds Index 

Month Lower Forecast Upper Actual 

May-11 346.51 500.46 654.41 498.8 

Jun-11 308.81 503.39 697.97 492.71 

Jul-11 278.23 506.32 734.40 494.77 

Aug-11 251.98 509.25 766.51 491.03 

Sep-11 228.72 512.18 795.63 488.2 

Oct-11 207.69 515.10 822.52 NA 

Nov-11 188.39 518.03 847.68 NA 

Dec-11 170.49 520.96 871.43 NA 

Figure 4.1 shows the data and forecasting results with 

lower and upper 95% confidence interval of IMA (1,1) 

model for the daily closing price Alquds Index. 

 

Figure 4.1. Data and Forecasting with lower and upper 95% confidence 

interval of IMA (1,1) model for daily closing price Alquds Index 

The actual values from May 2011 to Sep. 2011 are 

observed and added to Figure 4.1. to see if these points fall 

within the confidence interval. Figure 4.2 illustrates this 

new data. It is clear that the new actual values located 

within the confidence interval indicating an excellent 

forecasting for IMA (1,1) model based on GLS estimation 

method. 

 

Figure 4.2. Full Data and Forecasting with lower and upper 95% 

confidence interval of IMA (1,1) model for daily closing price Alquds 

Index  

5. Conclusion and Future Research 

In this section, we introduce conclusion of the main 

findings and offer suggestions for future research for using 

GLS to generate forecasts in regression models with auto-

correlated disturbances. 

5.1. Conclusion 

This paper has proposed five different estimation 

methods, namely: ML, CSS-ML, CSS, GLS, and OLS. We 

introduced the accuracy of the forecasting results based on 

RMSE using ARIMA model on real data for daily closing 

price Alquds index in Palestine and simulation technique. 

The main findings of this paper are as follows: 

The results of both real data and simulation reveal that 

GLS estimation method is comparable to other complicated 

estimation methods such as MLE procedures which often 

require inversion of large matrices and hence preferable as 

a robust estimation and forecasting method. 
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If the model is correctly specified, i.e. IMA (1,1), GLS 

estimation method performs nearly as efficiently as the 

other estimation methods as ML, CSS-ML, and CSS. For 

other over estimation models, the GLS estimation method 

does not differ significantly comparing to the other 

estimation methods. In addition, as the sample size 

increases, the efficiency of GLS mimics to that of the other 

estimation methods.  

For the original data, GLS is much more efficient in 

forecasting than the OLS estimation method. However, for 

the transformed data, OLS performs as nearly as the other 

estimation methods. Finally, for forecasting purposes there 

is not much gained in trying to identifying the exact order 

and form of the auto-correlated disturbances by using GLS 

estimation method. 

5.2. Future Research 

The plane for future research can be split into the 

following: First: Examine the effect on forecasting 

performance for other different models such as ARCH, and 

GARCH models and conduct applications in economic and 

financial forecasting  A second important consideration is 

the estimation of the standard errors of the estimators. It is 

unclear, however, how the variance estimators for GLS 

estimation behave for complicated time series models. 

Study the impact that the variance estimators may have on 

inference based on the GLS estimator. 
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