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Abstract: Model selection is an important part of any statistical analysis. Many tools are suggested for selecting the best 

model including frequentist and Bayesian perspectives. There is often a considerable uncertainty in the selection of a particular 

model to be the best approximating model. Model selection uncertainty arises when the data are used for both model selection 

and parameter estimation. Bias in estimators of model parameters often arise when data based selection has been done. 

Therefore, model averaging of the parameter estimators will be done to alleviate the bias in model selection in a set of 

candidate models, by combining the information from a set of candidate models. This paper is two-fold, new criteria of model 

selection are proposed based on different averages of AIC, BIC, AICc, and HQC. Also, model averaging is introduced to 

compare the parameter estimators in model averaging with the ones in model selection. Two Simulation studies are considered, 

the first is for model selection and showed that the new proposed criteria are lies between some of the known criteria such as 

AIC, BIC, AICc, and HQC, and so they can be used as new criteria of model selection. The second simulation study is for 

model averaging and showed that the parameter estimators have less bias and less predicted mean square error (PMSE) 

compared with the parameter estimators in model selection. 

Keywords: AIC, BIC, AICc, HQC, Kullback-Leibler (K-L) Distance, Model Averaging, Model Selection 

 

1. Introduction 

Model selection is the task of choosing from a candidate 

set of models, the one that fits the input data. Kullback and 

Leibler (1951) derived information measure referred as the 

Kullback-Leibler (K-L) distance. The K-L distance can be 

defined as a directed distance between two models. 

(Kullback (1959)). It is the most fundamental of all 

information measures and it is the logical basis for model 

selection. Estimation of Kullback-Leibler information is a 

key to derive the information criterion which is widely used 

for selecting a statistical model as defined by Akaike. 

(AKaike, 1973). 

Based on a Akaike's (1973) information criterion (AIC), 

many model-selection criteria have been proposed. Takeuchi 

(1976) introduced a very general derivation of an information 

criterion called Takeuchi's information criterion (TIC). The 

AIC and TIC are designed for the likelihood or quasi-

likelihood context, and they select the fitted model whose 

densities are close to the true density, which is a broad and 

useful feature. Sugiura (1978) proposed a corrected version 

of AIC denoted by AICC. The advantage of using AICC relies 

on its superior performance as a selection criterion in small-

sample applications. Lebreton et al. (1992) suggested simple 

modifications to AIC and AICC for overdispersed count data 

denoted by QAIC and QAICC, respectively. 

Schwarz (1978) introduced the Bayesian information 

criterion (BIC) as a competitor to the AIC. He derived BIC to 

serve as an asymptotic approximation to a transformation of 

the Bayesian posterior probability of a candidate model. The 

computation of BIC is based on the empirical log-likelihood 

and does not require the specification of priors. AIC and BIC 

share the goodness-of-fit term, but the penalty term of BIC is 

potentially much more stringent than the penalty term of AIC. 

Thus, BIC tends to choose fitted models that are more 

parsimonious than those favored by AIC. 

Hannan and Quinn (1979) suggested a criterion for 

identifying an autoregressive model denoted by HQC(p), and 

the adjusted version of it can be applied to regression 

models.(See Al-Saubaihi (2007)). 

Cavanaugh (1999), proposed a new class of criterion for 

linear model selection denoted by KIC, KICC, and MKIC as 
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analogue to AIC, AICC, MAIC respectively. He illustrated its 

performance in a simulation study for choosing an order of 

autoregression. 

When using model selection criteria, the model is fitted 

under a specific parametric probability distribution. The 

fitted model (or the approximated model) considers two 

types of risks (errors), the risk of modeling and the risk of 

estimation. A risk of modeling is considered in terms of the 

incorrect specification of the probability model. A risk of 

estimation is considered when estimating the true parameter 

vector in the restricted parameter space of the model. The last 

risk contains two components, the variance and the bias. The 

variance can be interpreted as a penalty of the size of the 

parameter space of the model, and the bias is the penalty for 

the distance between the restricted parameter space and the 

true parameter vector the penalty for the distance between the 

restricted parameter space and the true parameter vector of 

the model. The overall risk (which includes both the risks of 

modeling and estimation) is aimed to be minimized. Model 

selection criteria are the estimators of the overall risk of a 

model under the maximum-likelihood estimation. 

The aim of this paper is to provide a new class of criteria 

based on the averages of the most popular information 

criteria such that AIC, BIC, HQC, and AICc. The proposed 

criteria are applied to regression models from both 

theoretical and empirical point of view. Also, model 

averaging is introduced as a preferred method to best model 

inference in the regression setting. 

This paper is organized as follows. Section (2) reviews the 

Kullback-Leibler (K-L) information and some information 

criteria as estimators of the Kullback-Leibler information. 

Section (3) introduces the model weights of model selection 

criteria. Section (4) presents the statistical inference based on 

model averaging. Section (5) considers the proposed class of 

information criteria. Section (6) introduces simulation studies. 

Section (7) is devoted to the conclusion of this paper. 

2. The Cullback-Leibler Information 

Let Y1, ………, Yn are iid observations of a (px1) random 

vector Y. Let ( )yf  be a real probability distribution function 

which has an infinite number of parameters, and let ( )θ;yg  

be an approximating model (a probability distribution), and 

θare the parameters in the approximating model g that must 

be estimated from the data. A set of M approximated models 

(candidate models) for the representation of the data will be 

considered and denoted by, 

( ){ }Miyg
i

,....,1:; =θ .                     (1) 

Information lost when approximating model is used to 

approximate the full real model ( )⋅f . The aim is to find an 

approximating model that loses as little information as 

possible, which means minimizing the distance between a 

candidate model ( )θ;yg  and the real model ( )yf . A 

candidate model is a preferred one if it is the closest model to 

the true one. 

The kullback-Leibler information (K-L) (or distance) is 

considered a popular measure of closeness between the two 

models f and g. The K-L information is defined for 

continuous functions as follows, 

( ) ( ) ( )
( ) dy
yg

yf
yfgfI ∫ 








=

θ;
ln, ,              (2) 

where ln denotes by natural logarithm. It is always 

nonnegative and it is only equal to zero iff f = g. Also, 

( ) ( )fgIgfI ,, ≠  which implies that the K-L information is 

not the real distance. 

Kullback and Leibler (1951) developed the quantity 

( )gfI ,  in (2) from the information theory, and so they used 

the notation ( )gfI , . It is the information lost when using the 

model g as an approximate model to f. 

The K-L distance in the case of discrete distributions such 

as Poisson, binomial, or multinomial is defined as, 

( ) ( ) ( )
( )1 θ

K
i

i

i i

f y
I f ,g f y ln

g y;=

 
=  

  
∑ ,                    (3) 

where K are possible outcomes of the random variable Y. 

The expression for K-L distance in (2) can be written 

equivalently as, 

( ) ( ) ( ) ( ) ( )∫∫ −= dyygyfdyyfyfgfI θ;lnln, .      (4) 

The two terms on the right hand in (4) are the statistical 

expectations with respect to the real function ( )yf . 

Therefore, the K-L information in (4) can be written as 

follows, 

( ) ( )[ ] ( )[ ]θ;lnln, ygEyfEgfI −= .        (5) 

The first expectation on the right hand side of (5) is a 

constant that depends on the unknown true function f, which 

is clearly not known. Therefore, computing the second 

expectation, ( )[ ]θ;ln ygE  will give a relative measure of the 

distance between f and g. (See Bozdogan (1987); and Kapur 

and Kesavan (1992)). Therefore, the quantity ( )[ ]θ;ln ygE  is 

the quantity of interest. Minimizing ( )gfI , is equivalent to 

maximizing of ( )[ ]θ;ln ygE  with respect to θ . Since θ  is 

unknown, then model selection criterion will be changed to 

minimizing the expected estimated K-L information based on 

θ. So, the concept of selecting a model based on minimizing 

the estimated Kullback-Leibler information will be as 

follows, 

( ) ( )[ ] ( )[ ] ( )[ ]θθ ˆ;ln-constantˆ;lnln,ˆ ygEygEyfEgfI =−= ,   (6) 

where constant= ( )[ ]yfE ln , since ( )[ ]yfE ln  depends only 

on the unknown true distribution. So, this unknown term is 

treated as a constant. The term ( ) constant,,ˆ −gfI is a 

relative directed distance between the two models f and g 
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when estimating ( )[ ]θ;ln ygE . Thus ( )[ ]θ;ln ygE  becomes the 

quantity of  interest. 

In the following section, some of the most common 

information crtiteria are presented as estimators of the K-L 

information criterion. It is assumed that the model 

parameters are unknown and will be estimated using Fisher's 

maximum likelihood method, and a log-likelihood function, 

( ) ( )( )θ θln L \ y ln g y; ,=    is associated with each 

probability model in the set of M candidate models. (See 

Anderson et al. (1998)). 

2.1. Akaike's Information Criterion (AIC) 

Akaike information criterion (AIC), developed by Akaike 

(1973, 1974) is devoted to estimate the expected Kullback-

Leibler information in (6) between the model generating the 

data and a fitted candidate model. 

Akaike (1973, 1974) showed that the critical term in 

model selection is the second term of (6), i.e., 

( )θ̂E ln g y; −
 

. He found a relationship between this term 

and the maximized log-likelihood, which has allowed 

practical and theoretical advances in model selection and 

analysis of complex data. (See Stone (1982); Shibata (1983); 

and Deleauw (1992)). 

Akaike (1973) showed that the maximum log-likelihood is 

a biased upword estimator of the model selection criterion. 

He found that under certain conditions, this bias is 

approximately equal to k, the number of estimable 

parameters in the approximating model. Therefore, an 

unbiased estimator of the expected K-L information will be, 

( ) ( )θ̂ˆ ˆE I f ,g ln L \ y k   = −    ,                         (7) 

where L(·) is the likelihood function which is equivalent to, 

( ) ( )constant θ̂ ˆ ˆL \ y k - E I f,g − =   , 

or 

( ) ( )constant E I f,gθ̂ ˆ ˆL \ y k  − + = − +   , 

or 

( ) =+− kyL \θ̂ the estimated relative expected K-L distance. (8) 

The author Akaike (1973) introduced an information 

criterion denoted AIC by multiplying (8) by -2 to get, 

( )2 2θ̂AIC ln L \ y k = − +
  ,                    (9) 

where the first term of the right hand side represents the bias 

but the second term corresponds to the for estimated model. 

Thus, as shown in (9), AIC is defined without specific 

reference to a '' true model '' since the expectation of the 

logarithm of f (x) drops out as a constant independent of the 

data. 

Among candidate models, the model will be selected 

which yields the smallest value of AIC. This means that one 

should select the fitted approximated model, which on the 

average, to be closest to the unknown f. 

If the data are iid with normally distributed errors, then the 

AIC in (9) using the least squares estimator will be: 

2
RSS

AIC nln k
n

 = +  
,                        (10) 

where RSS is the residual sum of squares of the fitted model. 

The greatest advantage of AIC is its potential in model 

selection (i.e., variable selection), since AIC is independent 

of the order in which models are computed. Also, the ordered 

models according to AIC can be used to incorporate model 

uncertainty to obtain robust estimates. On the other hand, 

according to AIC, the model is good if it is in the set of 

candidate models and using the same data which have 

generated it. (See Anderson et al. (1998)).  

2.2. The Corrected Akaike's Information Criterion (AIC) 

Sugiura (1978); and Sakamoto eta al. (1986) found that 

AIC may not perform well if there are too many parameters 

with respect to the sample size. As a result, AIC exhibits a 

potentially high degree of negative bias. Sugiura (1978) 

derived a second version of AIC called the corrected AIC. 

Hurvich and Tsai(1989), studied the corrected AIC for small 

sample bias adjustment. The corrected AIC is denoted by 

AICc and defined as: 

( )2 2
1

θ nˆAICc ln L \ y k
n k

  = − +    − − 
,                (11) 

where 








−− 1kn

n
 is the correction factor. Eq.(11) can be 

written as: 

( ) ( )2 1
2 2

1
θ

k kˆAICc ln L \ y k
n k

+
 = − + +
  − −

, 

or 

( )2 1

1

k k
AICc AIC

n k

+
= +

− −
.                            (12) 

The AICc is an unbiased criterion for linear regression if 

the candidate models include the true one. AICc has an 

additional bias correction term, 
( )2 1

1

k k

n k

+
− −

 and must be used 

when the ratio (n/k) is small. If the ratio (n/k) is sufficiently 

large, then AIC and AICc are similar. (See Hurvich and Tsai 

(1989); (1991); and (1995)). 

While the AICc estimates the expected discrepancy with 

less bias than the AIC, the AIC is more universally applicable 

than AICc because the derivation of AIC is quite general but 

the derivation of AICc relies on the form of candidate model. 
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(See Cavanaugh, 1997). AIC is asymptotically efficient and it 

is not consistent, but AICc is an efficient criterion and it is 

asymptotically consistent. (See Bozdogan 1987; and 1994). 

2.3. Takeuchi's Information Criterion (TIC) 

Takeuchi (1976) proposed a general derivation of an 

information criterion, without taking expectation with respect 

to g. this criterion is called Takeuchi's information criterion 

(TIC) and it is useful when the candidate model is not close 

approximation to f. TIC is defined as follows: 

( ) ( )1
2 2θ̂ ˆ ˆTIC ln L tr J I

− = − +
  ,                     (13) 

where, 

( )
2

1

1 θ
θ θ

n

iT
i

ˆĴ ln g y ;
n =

∂= −
∂ ∂∑ ,                       (14) 

( ) ( )
1

1 θ θ
θ θ

n T

i i

i

ˆ ˆÎ ln g y ; ln g y ;
n =

∂ ∂ =  ∂ ∂ 
∑ .               (15) 

This does not require that g is correctly specified. If 

fg ≡ , then IJ ˆˆ = . Hence [ ] kIJtr =− ˆˆ 1 . Also, if g is close 

to f, then [ ] kIJtr ≈− ˆˆ 1 . TIC is rarely used in practice because 

it needs a very large sample size to obtain the two estimated 

matrices Ĵ  and Î . 

The AIC and TIC are designed for the likelihood (or quasi-

likelihood) models. The model needs to be a conditional 

density, not just a conditional mean or a set of moment 

conditions. Both AIC and TIC select models whose densities 

are close to the true one. (See Takeuchi (1987)). 

2.4. Mallows' Cp Criterion 

Mallows (1973) proposed the following predictive 

statistics, for (p-1) variable model (M) to MSE of full model 

and penalizes for the number of variables, 

( ) ( )
( ) ( )2p

SSE M
C M n p M

MSE full
= − + ,                 (16) 

Where ( ) 2
ˆ
MYYMSSE −= , is the SSE of the model M, 

( ) ( )
( )

SSE full
MSE full

df full
= , is the estimate of 2σ , and p(M) is 

the number of predictors in model M. 

The basic idea of Mallows' Cp criterion is to compare the 

predictive ability of subset models to that of full model. Full 

model, generally, is best for prediction, but if 

multicollinearity exist, then the parameter estimates will not 

be useful. Subset of full model that doesn't have as much 

collinearity will be better as long as there is no substantial 

bias in the predicted values to the full model. 

A model is considered good if ( ) pMC p ≤ . The benefit of 

pC is that it can be used to select the model size and then get 

a good model which contains as few variables as possible. 

Mallows' 
pC is used primarily for variable selection in linear 

regression, and it is the most popular criteria for this purpose. 

pC  is almost a special case of AIC as shown in (9). 

2.5. The Bayesian Information Criterion (BIC) 

Schwarz (1978) proposed the Baysian information 

criterion as follows: 

( ) ( )2 θ̂BIC ln L \ y K ln n = − +
  ,             (17) 

As usually used, BIC is computed for each model and the 

model with the smallest criterion value is selected. 

Eq.(17) is the same as AIC but the penalty term is greater. 

BIC tends to choose simpler models, but behaves quite 

differently than AIC. It is also based on different assumptions. 

BIC assumes that the candidate models contain the true 

model and the model most likely to be true is found in the 

Bayesian sense. (See Burnham and Anderson (2002)). 

2.6. Hannan and Quinn Criterion (HQC) 

Hannan and Quinn (1979) introduced a criterion for 

identifying an autoregressive model. The adjusted version for 

regression model can be shown as follows: 

( ) ( )( )2 2θ̂HQC ln L \ y K ln ln n = − +
  .               (18) 

The best model is the model which corresponds to 

minimum HQC. It is shown that HQC like BIC but unlike 

AIC in which it is not an estimator of Kullback-Leibler 

distance and also it is not an asymptotically efficient criterion. 

3. Selecting The Model Weights 

Selecting the best model depends on a set of candidate 

models which are fitted and then finding the corresponding 

information criteria such as AIC, AICc, TIC, BIC, HQC, and 

Cp. There will always be information lost due to choosing 

one of the candidate models to represent the true model. Let 

AIC values of the candidate  models denoted by AICi, 

i=1,…….,R, and let AICmin be the minimum of those values, 

then the AIC differences will be denoted by i∆ , i=1,…….,R, 

and defined as, 

∆
i i min

AIC AIC= − , i=1,……..,R,            (19) 

over all the candidate R models. (See Burnham and Anderson 

(2002)). 

The i∆ 's values allow a quick comparison and ranking  of 

the candidate models. The fitted mode i will be best if it has 

0min ≡∆≡∆ i . Anderson et al. (1998) introduced some 

rough rules of thumb as follows: 

� A model with a ∆i  within 0-2 units of the best model, 

i.e., 20 ≤∆≤ i  will have substantial support. 



152 Magda Mohamed Mohamed Haggag:  New Criteria of Model Selection and Model Averaging in Linear Regression Models 

 

 

� A model with a i∆  within 4-7 units of the best model, 

i.e., 74 ≤∆≤ i  will have less support. 

� A model with a i∆  greater than 10 units of the best 

model, i.e., indicates that the model is worse, will have 

no support, and can be omitted from further 

consideration. 

Akaike weights are the weights of evidence in favor of 

model i being the actual best model for the set of R models. 

Akaike weight is denoted by wi and defined as follows, 

1

1

2

1

2

∆

∆

i

i R

r

r

exp

w

exp
=

 − 
 =
 − 
 

∑
,                     (20) 

where i∆  as defined in (19). Akaike weights for all models 

combined should add to 1.  

Akaike weights are used for finding the following: 

� The probability that the candidate model is the best 

model. 

� The relative strength of evidence (evidenc ratio). 

� The variable selection, i.e., finding the variables which 

have the greatest influence. 

� The model averaging, as will be discussed in the 

following section. 

The weight iw  depend on the entire set of R models, so 

that if a model is added or dropped during analysis, the iw 's 

must be recomputed for all the models in the new defined set 

of models. (See Burnham and Anderson (2002); and (2004)). 

Burnham and Anderson (2002), showed that given any set 

of prior probability τ
i

, generalized Akaike weights are 

defined as follows, 

( )

( )∑
=

=
R

r

rr

ii
i

ygL

ygL
w

1

\

\

τ

τ
,                   (21) 

where ( )ygL i \  is the likelihood function of model ig  given 

the data y. 

4. Inference Based on Model Averaging 

4.1. Averaging of Model Parameters 

A large number of closely related models can be obtained 

in linear regression through all subsets selection. In the case 

that no single model is superior to some other models in a set 

of models, then inference based on a single model will cause 

risks. That is estimated model may vary from data set to 

another, causes more highly variable. In this case model 

averaging gives a relatively much more stabilized inference. 

(See Burnham and Anderson (2002); and 2004)). 

Burnham and Anderson (2002) showed  that a model 

average estimator of the regression parameters will have 

reduced bias and sometimes have better precision compared 

to the parameter estimators from the selected best model. 

If there are R models in a set of regression models, then 

each model have the parameter β  to be estimated. Each 

model i (i=1,…..,R) allows an estimate of the parameter βi . 

If the estimators βi
ˆ 's differ across the R models, then there 

will be a risk in depending on a single selected model. In this 

case, a weighted estimator of these estimators may be 

computed as follows, 

( )

( )
1

β
β

R

i j i j ,i

i
j

ˆw I g
ˆ

w j

=

+

=
∑

,                    (22) 

( ) ( )
1

R

i j i

i

w j w I g+
=

=∑ ,                      (23) 

and,  

( ) j i1    if the regressor x is in model g
  

0    otherwise.
j i

.
I g

= 


,    (24) 

Where ij ,β̂  refers to the estimator of  
jβ  based on model 

ig , 
iw is the Akaike weight of model 

ig , and ( )jw+  is the 

sum of the Akaike weights over all models in the set where 

regressor j exists in the model. 

The second model averaging is to consider that the 

variable 
jx  is in every model. In this case, in some models 

jβ  is set to zero rather than being unknown. Conditional 

model selection of 
ig  gives a biased estimator of ij ,β̂ . 

Therefore, a second model-averaged estimator is proposed as 

follows, 

( ) jjw ββ ˆˆ
+= ,                         (25) 

where βˆ  denotes a second-order average estimator derived 

from model averaging over all R models. In this case, 
jx  is 

not in some models in the set, so 0β
j ,i

ˆ ≡  is used instead of 

the estimator β
j ,i

ˆ . It is clear that ( )jw+  shrinks the 

conditional jβˆ  to zero and thus ameliorates the model 

selection bias of jβˆ .(See Burnham and Anderson (2002); 

and (2004)). 

In this work, conditional inference which is inference 

based on a best model is considered and unconditional 

inference, which is based on all models are applied for 

comparison. A model averaged estimator will have a reduced 

bias and a better precision compared to the estimator 
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computed from the selected best model. (See Burnham and 

Anderson (2002); and (2004) for regression models; and 

Leamer (1978); and Hoeting et al. (1999) for Bayesian 

viewpoint). 

4.2. Unconditional Confidence Intervals 

A (1-α)100% unconditional confidence interval will be set. 

There are two general approaches: 

� The first approach is based on the bootstrap used by 

Buckland et al. (1997). 

� The second approach is based on the analysis results of 

the one data set. 

� The second analytical approach will be used and 

applied in this work.  

The conditional confidence interval is given by: 

( )ii seZ ββ α
ˆˆ

2
1

∧

−
± ,                      (26) 

where α is the level of significance, ( ) ( )∧∧
= iise ββ ˆvarˆ , and 

( )∧

iβ̂var  is the estimated conditional variance of the selected 

model. Also, the following formula can be used for the 

conditional confidence interval,  

( )ii
df

i gset \ˆˆ

2
1,

ββ α
∧

−
± ,                      (27) 

where df denote the degrees of freedom. The Akaike (wi) 

weights that are used to rank and scale models, can also be 

used in estimating the unconditional precision where the 

interest in the parameter β over all R models (for i=1,……,R), 

is defined as, 

( )
2

1

2
ˆˆ\ˆˆˆˆ
























 −+=





 ∑

=

R

i

iiiii graVwraV ββββ ,     (28) 

Where ∑
=

=
R

i

iii w

1

ˆˆ ββ , and βˆ represents a form of model 

averaging. βi
ˆ  means that the parameter β is estimated based 

on model gi, but β is a parameter in common to all R models 

(even if its value is 0 in model i so that 0βi
ˆ = ). The 

estimator in (28) include two components of variance, the 

first one is the conditional sampling variance given model gi 

( )( )β
i i

ˆVar \ g , and the second part is a variance component 

for model selection uncertainty 
2

ˆˆ 




 − ββ i . The sum of the 

two components is multiplied by the Akaike weight, which 

reflects the relative support of model i. (See Burnham and 

Anderson (2002)). 

The unconditional confidence interval will be as follows: 







±

∧

− ii seZ ββ α
ˆˆ

2
1

,                    (29) 

where  

( ) ( )β β
i i

ˆ ˆ
se var

∧
∧

= ,   (30) 

and 

 

∧








iβˆvar  is as defined in (28). In this work, the conditional 

and unconditional confidence intervals for β
i
's are 

considered for the purpose of comparison. 

5. The Proposed Information Criteria 

Information criteria are used to select the best 

approximated model to the true model in a set of candidate 

models. These criteria such as AIC, BIC, HQC, and AICc, 

include two components, the logarithm of the sum of squared 

residuals which decreases with the increasing number of the 

estimated parameters. These criteria differ in the punishing 

terms. Therefore by taking the averages of these criteria, new 

criteria can be obtained which differ also in the punishing 

terms.  The following are the proposed criteria based on AIC: 

� The average of AIC and BIC which is denoted by 

AVGAB, and defined as follows: 

( )

( )[ ] ( )( )nKyL

BICAICAVGAB

ln5.01\ˆln2

2

1

++−=

+=

θ
          (31) 

� The average of AIC and HQC which is denoted by 

AVGAH, and defined as follows: 

( )

( )[ ] ( )( )( )nKyL

HQCAICAVGAH

lnln12\ˆln2

2

1

++−=

+=

θ
        (32) 

� The average of AIC and AICc which is denoted by 

AVGACc, and defined as follows: 

( )

( )

1

2

2 1
1

θ

AVGACc AIC AICc

nˆln L \ y K
n k

= +

   = − + +    − −  

      (33) 

Lemma 5.1 

The average of AIC and BIC criteria, denoted by AVGAB 

in (31), is always greater than BIC and less than AIC when 

the sample size n<8, but AVGAB is always greater than AIC 

and less than BIC when the sample size n>8. The equality, 

between AIC, BIC, and AVGAB, holds when n ≈ 8. 

Therefore AVGAB lies between AIC and BIC and can be 

used as a new criterion. 
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Proof 

It is found that: AIC-BIC= 2k- kln(n) > 0, when n < 8, and 

BIC-AIC=kln(n) – 2k >0, when n > 8. Also, AVGAB-AIC = 

k + 0.5kln(n) – 2k=0.5kln(n) –k >0, for n >8, and BIC-

AVGAB = 0.5kln(n)-k > 0, for n > 8. 

Thus, AVGAB is between AIC and BIC when n < 8 as 

follows: 

(BIC < AVGAB < AIC), n < 8,               (34) 

and, AVGAB is between AIC and BIC when n > 8 as follows: 

(AIC < AVGAB < BIC), n > 8,              (35) 

From (34) and (35), AVGAB can be used as a new 

criterion for selecting a model.  

Lemma 5.2 

The average of AIC and HQC criteria, denoted by AVGAH 

in (32), is always greater than HQC and less than AIC when 

the sample size n<16, but AVGAH is always greater than 

HQC and less than AIC when the sample size n>16. The 

equality, between AIC, HQC, and AVGAH, holds when n≈

16. Therefore AVGAH lies between AIC and HQC and can 

be used as a new criterion for selecting a model. 

Proof 

It is found that: AIC-HQC= 2k- 2kln(ln(n)) > 0, when n < 

16, and HQC-AIC=2kln(ln(n)) – 2k >0, when n >16. Also, 

AIC - AVGAH = k(1- ln(ln(n)) >0, for n <16, and AVGAH - 

AIC=k(ln(ln(n))-1) > 0, n >16. 

Thus, AVGAH is between AIC and HQC when n < 16, as 

follows: 

(HQC < AVGAH < AIC), n <16,                   (36) 

and, AVGAH is between AIC and HQC when n > 16 as 

follows: 

(AIC < AVGAH < HQC), n > 16,                 (37) 

From (36) and (37), AVGAH can be used as a new 

criterion for selecting a model. 

Lemma 5.3 

The average of AIC and AICc criteria, denoted by 

AVGACc in (33), is always greater than AIC , and less than 

AICc when  k >0, n>k+1, but AVGACc is always greater 

than AICc and less than AIC when k >0, n<k+1 (overfitting). 

The equality, between AIC, AICc, and AVGACc, holds for 

large values of n. Therefore AVGACc lies between AIC and 

AICc and can be used as a new criterion for selecting a 

model. 

Proof 

It is found that: 
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 > 0, for k >0, n<k+1 (over fitting). AIC=AICc=AVGACc for 

large values of n. 

Thus, AVGACc is between AIC and AICc when n < k+1 

(over fitting), as follows: 

(AICc < AVGACc < AIC), n <k+1, (over fitting)     (38) 

and, AVGACc is between AIC and AICc when n > k+1 as 

follows: 

(AIC < AVGACc < AICc), n > k+1,                 (39) 

From (38) and (39), AVGACc can be used as a new 

criterion for selecting a model. 

6. Simulation Studies 

Simulation is a very useful method to gain insight into 

model selection and model averaging. The following 

simulation studies consider some simulation studies in both 

model selection and model averaging. 

6.1. Simulations of Model Selection 

Suppose that the generating linear regression model for the 

data is defined as, 

εβ +=
��

XY , ε ∼ ( )IN 2,0
�

σ ,                  (40) 

where Y is an (nx1) observation vector, ε is an (nx1) error 

vector, 
�

X  is an ( )
�

pn × design matrix of rank 
�

p , and 
�

β  

is a ( )1×
�

p  vector of unknown parameters. The objective is 

to find a suitable approximate model to (40). Define

( )2,
���

σβθ = . The candidate linear regression model for 

selection takes the form, 

εβ += XY , ε ∼ ( )IN 2,0 σ ,                 (41) 

where X is an ( )pn × design matrix of rank p, and β  is a 

( )1×p  vector of unknown parameters. Define ( )2,σβθ = , 
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and ( )2θ β σˆ ˆ ˆ,=  is a vector of the maximum likelihood 

estimators of θ  obtained by maximizing the likelihood 

function ( )θ\yf . The candidate models correspond to 

design matrices of ranks 2, 3, …, k, where k=(p+1), and the 

matrix of rank 2 contains only one regressor and a column 

vector of ones. One of the candidate models will be correctly 

specified by containing the same regressors as the true one. 

Different sizes of samples 6, 8, 16, 20, 30, 50, 100, and 500 

are used. For every sample size, the candidate models are 

fitted and evaluated by the AIC, AICc, BIC, HQC, AVGAB, 

AVGAH, and AVGACc criteria. This part of simulation 

consists of two practical applications. The first application 

considers the nested models, where the candidate models will 

be a sequence of models with design matrices of ranks, 2, 

3, ..., p+1. The models for 
�

pp <≤2  will be underfitted and 

those for kpp ≤≤
�

, will be overfitted. Here, p is the true 

order and k=p+1, which contains the regressors and the 

constant term (column of ones). The second application 

considers all possible regressions which is more realistic than 

the nested models. (See Cavanaugh and Neath (1999); and 

Burnham and Anderson (2002); and 2004)).  

6.1.1. Model Selection Using Nested Models 

In all sets k=11(10 regressors + 1) with different sample 

sizes n=6, 8, 16, 20, 30, 50, 100, 200, and 500 with 1000 

replications. The true model is parameterized by 

( )4,3,2,1,1=
�

β , and 5=
�

p . Thus there are 10 candidate 

models, from which the smallest 3 models are under fitted 

and the largest 6 models are over fitted as follows: 

( )
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The regressors are generated from a N(0,1) distribution. 

The true model variance is set at 12 =
�

σ , 152 =
�

σ ,and 

302 =
�

σ  such that the signal-to-noise ratio (SNR) will be 

(1:0.03), (1:0.5), and (1:1), respectively. Therefore the results 

are shown in three groups, the first group is for 1:0.03 SNR, 

the second group is for 1:0.5, the third group is for 1:1 SNR. 

The performance of each criterion is affected by the form of 

the candidate model, the sample size n, and the signal-to-

noise ratio (SNR) for the true model (SNR). (See Cavavough 

and Neath (1999)). 

Table (1) in Appendix (A) shows the results of the first 

group (1:0.03 SNR) for the four criteria AIC, BIC, AICc, 

HQC, in addition to the three proposed criteria AVGAB, 

AVGAH, and AVGACc. Table (2) in Appendix (A) shows the 

results of the second group (1:0.5 SNR) for the four criteria 

AIC, BIC, AICc, HQC, in addition to the three proposed 

criteria AVGAB, AVGAH, and AVGACc. Also, Table (3) in 

Appendix (A) shows the results of the third group (1:1 SNR) 

for the four criteria AIC, BIC, AICc, HQC, in addition to the 

three proposed criteria AVGAB, AVGAH, and AVGACc. All 

the criteria are showed difficulty in identifying the correctly 

specified model. Often underfitted models are chosen in all 

cases of SNR 1:0.03, 1:0.5 and 1:1, except BIC, HQC, AICc, 

AVGAB, and AVGAH for n<8.(See Table(1), Table(2) and 

Table(3)), where these criteria identified the correct model 

M(4). In Table (3), all the criteria, except AVGACc, 

identified the correct model (M4) for small sample sizes (less 

than 16). The values of all criteria are increasing more 

rapidly in the second and third groups than in the first one as 

a result of the large variance of the noise term in the second 

and third groups. Comparing the proposed criteria AVGAB, 

AVGAH, and AVGACc, for the model M(4) it is found that 

AVGAH outperforms for smaller sample sizes (n=6 and n=8), 

and AVGACc outperforms for larger sample sizes (greater 

than n=20). The results of our proposed criteria will be 

shown for M(4). These results support the three lemmas in 

section (5) as follows: 

� For AVGAB 

It is found that AVGAB, when n<8, i.e., when n=6, is 

greater than BIC and less than AIC. On the other side, when 

n>8, i.e., it is found that AVGAB is less than BIC and greater 

than AIC. Also, when n=8, it is shown that AIC, BIC, and 

AVGAB are approximately equal. These results support our 

lemma (1) as shown in Tables (1), (2), and (3) for the three 

groups. Therefore, AVGAB can be used as a new criteria of 

model selection for small and large sample sizes. 

� For AVGAH 

It is found when n<16, i.e., when n=6, and 8, that AVGAH 

is greater than HQC and less than AIC. But when n>16, i.e., 

it is found that AVGAH is less than HQC and greater than 

AIC. Also, when n=16, it is shown that AIC, HQC, and 

AVGAH are approximately equal. These results support our 

lemma (2) as shown in Tables (1), (2), and (3) for the three 

groups. Therefore, AVGAH can be used as a new criteria of 

model selection for small and large sample sizes. 

� For AVGACc 

It is found that AVGACc is always greater than AIC and 

less than AICc in the three groups for small sample sizes. For 

example, AIC< AVGACc<AICc for n=20, 50 and SNR is 

1:0.03. (See Table (1)). Also, AIC<AVGACc<AICc for n=8, 

20 and SNR is 1:0.5, but AIC<AVGACc when n=8, 20, 50 

and SNR is 1:1. These results mean that AVGACc is always 

greater than AIC and less than AICc for smaller sample size. 

These results also, support lemma (3) when n>k+1. 

Therefore, AVGACc can be used as a new criteria of model 

selection for small and medium sample sizes. It is found for 

large sample sizes in all groups that AIC and AICc and 

AVGACc are approximately equal. (See Tables (1), (2), and 

(3) for n=500). 
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6.1.2. Model Selection Using All Possible Regression 

All possible regression are more realistic than the nested 

models. A study is considered with 10 regressors in addition 

to the intercept and different sample sizes n=6, 8, 16, 20, 30, 

50, 100, 200, and 500. As aresult, 91 models are considered: 

one model with all 10 regressors, 10 models with 9 

regressors, 10 models with 8 regressors, 10 models with 7 

regressors, 10 models with 6 regressors, 10 models with 5 

regressors, 10 models with 4 regressors, 10  models with 3 

regressors, 10 models with 2 regressors, and 10  with one 

regressor. The regressors are generated from a N(0,1). The 

true model is parameterized by ( )4,3,2,1,1=
�

β , 152 =
�

σ , 

and 5=
�

p , such that the SNR is 1:0.5.  

Figure (1) in Appendix (B) show all possible regressions. 

Each row in each graph represents a model, and the shaded 

rectangles in the columns indicate the variables included in 

the given model. The numbers on the left margin are the 

values of BIC, and the darkness of the shading represents the 

ordering of the BIC values. In Figure (1-1) show all possible 

regressions in the first group when sample size=20, the first 

best model has the intercept, x1, x3, and x7 with lowest value 

of BIC(=-1.1); and the second best model has the intercept, 

x3, and x7 with a value of BIC=-0.61; etc. The variables in 

the various models differ according to sample size, for 

example, in Figure (1-6) when n=500, the first best model 

has the intercept, x3, and x7 with lowest value of BIC(=-1.4); 

and the second best model has the intercept, x3, x4, and x7 

with a value of BIC=0.51; etc. It is found that the regressor 

variables in the various models differ according to sample 

size and the SNR as shown in Figures (1) in Appendix(B). 

It is found that most of the best models contain the 

regressors, x1, x2, x3, x4, and x7. 

6.2. Simulation of Model Averaging 

Model averaging is used to base point inferences on the 

entire set of models rather than a single best model. For 

comparison, the Akaike (AIC), corrected Akaike (AICc), and 

Bayesian information criterion (BIC) weights are used as 

different point inference methodology. The inference based 

on all models can be used to reduce the bias effects of 

regression coefficients. (See Burnham and Anderson (2002)). 

The entire set of models which will be used here is the 

second group simulation study considered in section 6-1-1 

with SNR 1:0.5. Table (4) in Appendix (A) shows the AIC 

weights by model, sample size n=100, and regressors used in 

each model. Table (5) in Appendix (A) shows the AICc 

weights by model, sample size n=100, and regressors used in 

each model. Table (6) in Appendix (A) shows the BIC 

weights by model, sample size n=100, and regressors used in 

each model. From these Tables, it is shown that the best four 

models chosen by AIC are M(3), M(1), M(4), and M(7), 

respectively. But the best four models chosen by AICc and 

BIC are M(1), M(3), M(2), and M(4), respectively. 

Table (7) in Appendix (A) shows the squared bias, the 

predicted mean squared error (PMSE), and the 95% 

confidence intervals (CI's) of regression coefficients, in all 

models using model selection and model averaging. It is 

clear that model averaged has less bias and less PMSE 

compared to model selection. (See Figure (2) in Appendix 

(B)). Also, CI's for model averaging are greater than those of 

model selection for regression coefficients. These results 

assure that we need methods to reduce model selection bias 

and PMSE of the alternative models. Model averaging is the 

one which based on all models. 

7. Conclusions 

The values of all the criteria are affected by the different 

SNR used in this work; these values are increased by 

increasing the noise. In selecting the true model, it is found 

that the proposed criterion AVGAH gave best results, 

compared to the other two proposed criteria (AVGAB and 

AVGACc), for sample sizes (n=6,8,and 20) and for all signal-

to-noise ratio (SNR) used in this work. On the other hand, 

the proposed criterion AVGACc gave best results, compared 

to the other two proposed criteria (AVGAB and AVGAH), for 

large sample sizes (n=30, 50,100,200, and 500) and for all 

signal-to-noise ratio (SNR) used in this work 

When comparing the four criteria AIC, BIC, AICc, and 

HQC, in selecting the true model, it is found that these 

criteria are also not affected by the different SNR. For 

example when n=6, it is found that the criterion AICc gave 

the best results for all SNR. when n=8, it is found that the 

criterion HQC gave the best results for all SNR. It is found 

that AIC selected the true model when n=200 for all SNR. 

When comparing all the criteria, AIC, BIC, AICc, HQC, 

AVGAB, AVGAH, and AVGACc in selecting the true model, 

it is found that all the criteria are affected a little by the 

different SNR used in this work as follows: 

� AICc selected the true model when n=6 in all SNR. 

� HQC selected the true model when n=8 in all SNR. 

� AVGACc selected the true model when n=16,30,100, 

500 in all SNR, and when n=50 and SNR 1:0.03, and 

1:0.5. 

� AIC selected the true model when n=20,200 in all SNR, 

and n=50 when SNR is 1:1 only. 

Model selection is just a method of selecting the best 

model, and the statistical inference is based on that model. 

Model averaging is based on the entire set of models (the 

candidate models) of the problem at hand. Our results 

showed smaller values of bias, variance, and PMSE for 

regression coefficient estimates of model averaging than that 

of model selection. It is found that statistical inference based 

on all models can be used to reduce model selection bias and 

variance of the regression coefficients estimates. Model 

averaging is a new field which need more research, advances, 

and updating. 
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Appendix (A) 

Table (1). Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03.  A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 200, 500) 

for 10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

6 M(1) 21.31 20.69 33.31 18.81 21.00 20.06 22.81 

 M(2) 21.31 20.48 61.31 17.98 20.90 19.64 24.31 

 M(3) 22.23 21.19 INF 18.06 21.71 20.14 27.31 

 M(4) 21.52 20.27 -62.48 16.52 20.89 19.02 33.31 

 M(5)        

 M(6)        

 M(7)        

 M(8)        

 M(9)        

 M(10)        

Table (1). Continued : Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

8 M(1) 23.11 23.35 29.11 21.51 23.23 22.31 24.11 

 M(2) 24.56 24.88 37.90 22.42 24.72 23.49 24.91 

 M(3) 26.49 26.89 56.49 23.81 26.69 25.15 26.11 

 M(4) 26.64 27.12 110.64 23.43 26.89 25.04 25.11 

 M(5) 15.29 15.84  11.54 15.57 13.41 32.11 

 M(6) -15.27 -14.63  -19.56 -14.95 -17.41 44.11 

 M(7)        

 M(8)        

 M(9)        

 M(10)        

Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

16 M(1) 49.18 51.50 51.18 49.30 50.34 49.24 49.87 

 M(2) 50.18 53.28 53.82 50.34 51.73 50.26 50.18 

 M(3) 52.03 55.90 58.03 52.23 53.96 52.13 47.54 

 M(4) 52.91 56.54 61.24 52.15 54.23 52.02 50.98 

 M(5) 53.88 59.28 67.88 54.15 56.58 54.01 51.51 

 M(6) 55.47 61.65 76.04 55.79 58.56 55.63 52.18 

 M(7) 57.26 64.22 87.27 57.62 60.74 57.45 53.03 

 M(8) 58.55 66.27 102.55 58.94 62.41 58.75 54.18 

 M(9) 58.24 66.74 124.24 58.68 62.49 58.46 55.78 

 M(10) 60.22 69.49 164.22 60.69 64.85 60.45 58.18 

Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

20 M(1) 66.54 69.53 68.04 67.13 68.04 66.83 66.88 

 M(2) 68.41 72.39 71.07 69.18 70.40 68.79 67.07 

 M(3) 64.72 69.69 69.00 65.69 67.21 65.20 64.48 

 M(4) 66.67 72.64 73.13 67.84 69.66 67.25 67.54 

 M(5) 68.62 75.59 77.95 69.98 72.11 69.30 67.83 

 M(6) 68.97 76.94 82.07 70.53 72.96 69.75 68.16 

 M(7) 67.07 76.03 85.07 68.82 71.55 67.94 68.54 

 M(8) 69.03 78.99 93.47 70.97 74.01 70.00 69.00 

 M(9) 68.72 79.67 101.72 70.85 74.19 69.78 69.54 

 M(10) 68.70 80.64 113.27 71.03 74.67 69.86 70.21 
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Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

30 M(1) 85.70 89.90 86.62 87.05 87.80 86.37 85.92 

 M(2) 87.61 93.22 89.21 89.41 90.42 88.51 86.03 

 M(3) 86.40 93.41 88.90 88.64 89.90 87.52 83.28 

 M(4) 87.10 95.51 90.75 89.79 91.30 88.44 86.30 

 M(5) 88.61 98.41 93.70 91.74 93.51 90.17 86.45 

 M(6) 90.34 101.55 97.19 93.92 95.94 92.13 86.61 

 M(7) 91.48 104.09 100.48 95.52 97.79 93.50 86.79 

 M(8) 92.38 106.39 103.95 96.86 99.38 94.62 87.00 

 M(9) 94.33 109.74 109.00 99.26 102.04 96.79 87.02 

 M(10) 95.88 112.70 114.24 101.26 104.29 98.57 87.44 

Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

50 M(1) 136.76 142.50 137.28 138.95 139.63 137.86 136.89 

 M(2) 135.85 143.50 136.74 138.76 139.67 137.31 136.95 

 M(3) 137.85 147.41 139.21 141.49 142.63 139.67 134.09 

 M(4) 136.35 147.82 138.30 140.72 142.08 138.53 137.10 

 M(5) 136.87 150.25 139.53 141.96 143.56 139.41 137.17 

 M(6) 138.77 154.06 142.28 144.59 146.41 141.68 137.25 

 M(7) 139.78 156.99 144.28 146.33 148.38 143.05 137.33 

 M(8) 137.43 156.55 143.07 144.71 146.99 141.07 137.42 

 M(9) 139.19 160.22 146.14 147.20 149.71 143.20 137.51 

 M(10) 139.81 162.76 148.24 148.55 151.29 144.18 137.61 

Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

100 M(1) 292.73 300.55 292.98 295.90 296.64 294.31 292.79 

 M(2) 293.52 303.94 293.94 297.74 298.73 295.63 292.83 

 M(3) 295.39 308.41 296.02 300.66 301.90 298.02 289.89 

 M(4) 297.38 313.01 298.28 303.71 305.20 300.54 292.89 

 M(5) 299.22 317.45 300.43 306.60 308.34 302.91 292.92 

 M(6) 300.71 321.55 302.29 309.14 311.13 304.92 292.96 

 M(7) 302.67 326.12 304.67 312.16 314.39 307.42 293.99 

 M(8) 304.24 330.29 306.71 314.79 317.27 309.51 293.03 

 M(9) 304.98 333.64 307.98 316.58 319.31 310.78 293.07 

 M(10) 306.62 337.89 310.21 319.28 322.26 312.95 293.10 

Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

200 M(1) 602.82 612.72 602.94 606.83 607.77 604.82 602.85 

 M(2) 598.81 612.01 599.02 604.15 605.41 601.48 602.87 

 M(3) 600.40 616.90 600.71 607.08 608.65 603.74 599.90 

 M(4) 602.15 621.94 602.59 610.16 612.05 606.16 602.90 

 M(5) 602.78 625.87 603.37 612.13 614.33 607.46 602.92 

 M(6) 604.64 631.03 605.40 615.32 617.84 609.99 602.93 

 M(7) 605.24 634.93 606.19 617.26 620.09 611.25 602.95 

 M(8) 606.93 639.91 608.09 620.28 623.42 613.60 602.96 

 M(9) 608.78 645.06 610.18 623.46 626.92 616.12 602.98 

 M(10) 609.79 645.37 611.46 625.80 629.58 617.80 603.00 
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Table (1). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.03. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

500 M(1) 1373.22 1385.87 1373.27 1378.18 1379.55 1375.70 1373.23 

 M(2) 1375.14 1392.00 1375.22 1381.76 1383.27 1378.45 1373.24 

 M(3) 1376.81 1397.88 1376.93 1385.08 1387.35 1380.95 1370.25 

 M(4) 1376.39 1401.68 1376.56 1386.32 1389.04 1381.35 1373.25 

 M(5) 1378.19 1407.69 1378.42 1389.77 1392.94 1383.98 1373.26 

 M(6) 1379.11 1412.83 1379.41 1392.34 1395.97 1385.73 1373.27 

 M(7) 1367.40 1405.33 1367.78 1382.29 1386.37 1374.85 1373.27 

 M(8) 1368.90 1411.05 1369.35 1385.44 1389.98 1377.17 1373.28 

 M(9) 1370.86 1417.22 1371.40 1389.05 1394.04 1379.96 1373.28 

 M(10) 1371.67 1422.24 1372.31 1391.51 1396.96 1381.59 1373.29 

Table (2). Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 200, 500) for 

10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

6 M(1) 53.81 53.18 65.81 51.31 53.50 52.56 55.31 

 M(2) 53.81 52.97 93.81 50.47 53.39 52.14 56.81 

 M(3) 54.72 53.68 INF 50.56 54.20 52.64 58.31 

 M(4) 54.02 52.77 -29.98 49.02 53.39 51.52 68.81 

 M(5)        

 M(6)        

 M(7)        

 M(8)        

 M(9)        

 M(10)        

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

8 M(1) 66.44 66.68 72.44 64.83 66.56 65.64 67.44 

 M(2) 67.89 68.21 81.22 65.75 68.05 66.82 68.24 

 M(3) 69.82 70.21 99.82 67.14 70.01 68.48 67.19 

 M(4) 69.97 70.45 153.97 66.76 70.21 68.37 71.44 

 M(5) 58.62 59.17 INF 54.87 58.89 56.74 75.44 

 M(6) 28.06 28.69 -115.94 23.77 28.38 25.92 87.44 

 M(7)        

 M(8)        

 M(9)        

 M(10)        

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

16 M(1) 135.84 138.15 137.84 135.96 136.99 135.90 136.24 

 M(2) 136.84 139.93 140.48 137.00 138.39 136.92 136.53 

 M(3) 138.69 142.55 144.69 138.89 140.62 138.79 134.09 

 M(4) 138.57 143.20 147.90 138.81 140.89 138.69 137.20 

 M(5) 140.53 145.94 154.53 140.81 143.23 140.67 137.64 

 M(6) 142.13 148.31 162.70 142.44 145.22 142.29 138.17 

 M(7) 143.92 150.88 173.92 144.28 147.40 144.10 138.84 

 M(8) 145.21 152.93 189.21 145.60 149.07 145.40 139.69 

 M(9) 144.90 153.40 210.90 145.33 149.15 145.12 140.84 

 M(10) 146.87 156.14 250.87 147.35 151.51 147.11 142.44 
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Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

20 M(1) 174.87 177.85 176.37 175.45 176.36 175.16 175.20 

 M(2) 176.73 180.71 179.40 177.51 178.72 177.12 175.40 

 M(3) 173.04 178.02 177.32 174.01 175.53 173.52 172.80 

 M(4) 174.99 180.97 181.46 176.16 177.98 175.58 175.87 

 M(5) 176.94 183.91 186.28 178.30 180.43 177.62 176.15 

 M(6) 177.30 185.26 190.39 178.85 181.28 178.07 176.48 

 M(7) 175.39 184.35 193.39 177.14 179.87 176.27 176.87 

 M(8) 177.35 187.31 201.80 179.29 182.33 178.32 177.32 

 M(9) 177.04 187.99 210.04 179.18 182.51 178.11 177.87 

 M(10) 177.02 188.97 221.59 179.35 182.99 178.18 178.53 

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

30 M(1) 248.18 252.39 249.11 249.53 250.29 248.86 248.40 

 M(2) 250.10 255.70 251.70 251.89 252.90 250.99 248.52 

 M(3) 248.88 255.89 251.38 251.12 252.39 250.00 245.76 

 M(4) 249.58 257.99 253.23 252.27 253.78 250.93 248.78 

 M(5) 251.09 260.90 256.18 254.23 255.99 252.66 248.93 

 M(6) 252.82 264.03 259.68 256.41 258.42 254.61 249.10 

 M(7) 253.96 266.57 262.96 257.99 260.27 255.98 249.28 

 M(8) 254.86 268.87 266.44 259.34 261.87 257.10 249.47 

 M(9) 256.81 272.23 271.48 261.74 264.52 259.28 249.68 

 M(10) 258.37 275.18 276.72 263.75 266.77 261.06 249.92 

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

50 M(1) 407.57 413.30 408.09 409.75 410.44 408.66 407.69 

 M(2) 406.65 414.30 407.54 409.57 410.48 408.11 407.76 

 M(3) 408.65 418.21 410.02 412.29 413.43 410.47 404.89 

 M(4) 407.15 418.62 409.11 411.52 412.89 409.34 404.90 

 M(5) 407.67 421.06 410.34 412.77 414.36 410.22 407.98 

 M(6) 409.57 424.87 413.08 415.40 417.22 412.48 408.06 

 M(7) 410.58 427.79 415.08 417.13 419.19 413.86 408.14 

 M(8) 408.23 427.35 413.87 415.51 417.79 411.87 408.23 

 M(9) 409.99 431.03 416.94 418.01 420.51 414.00 408.32 

 M(10) 410.62 433.56 419.05 419.36 422.09 414.99 408.41 

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

100 M(1) 834.34 842.16 834.59 837.51 838.25 835.92 834.40 

 M(2) 835.13 845.55 835.56 839.35 840.34 837.24 834.44 

 M(3) 836.99 850.02 837.63 842.27 843.51 839.63 831.50 

 M(4) 838.99 854.62 839.89 845.32 846.81 842.15 834.50 

 M(5) 840.83 859.06 842.04 848.21 849.95 844.52 834.53 

 M(6) 842.32 863.16 843.90 850.75 852.74 846.54 834.57 

 M(7) 844.28 867.73 846.28 853.77 856.00 849.03 834.60 

 M(8) 845.85 871.90 848.32 856.40 858.88 851.12 834.64 

 M(9) 846.60 875.25 849.60 858.19 860.92 852.39 834.68 

 M(10) 848.23 879.50 851.82 860.89 863.87 854.56 834.71 
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Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

200 M(1) 1686.04 1695.94 1686.17 1690.05 1690.99 1688.05 1686.07 

 M(2) 1682.03 1695.23 1682.24 1687.37 1688.63 1684.70 1686.09 

 M(3) 1683.62 1700.12 1683.93 1690.30 1691.87 1686.96 1683.10 

 M(4) 1685.37 1705.17 1685.81 1693.38 1695.27 1689.38 1686.12 

 M(5) 1686.00 1709.09 1686.59 1695.35 1697.55 1690.68 1686.14 

 M(6) 1687.87 1714.25 1688.62 1698.54 1701.06 1693.21 1686.15 

 M(7) 1688.46 1718.15 1689.41 1700.48 1703.31 1694.47 1686.17 

 M(8) 1690.15 1723.13 1691.31 1703.50 1706.64 1696.82 1686.18 

 M(9) 1695.00 1728.28 1693.40 1706.68 1710.14 1699.34 1686.20 

 M(10) 1693.01 1732.59 1694.68 1709.03 1412.80 1701.02 1686.22 

Table (2). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:0.5. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

500 M(1) 4081.27 4093.92 4081.32 4086.23 4087.59 4083.75 4081.28 

 M(2) 4083.19 4100.05 4083.27 4089.81 4091.62 4086.50 4081.29 

 M(3) 4084.86 4105.93 4084.98 4093.13 4095.40 4088.99 4078.30 

 M(4) 4084.44 4109.73 4084.61 4094.37 4097.09 4089.40 4081.30 

 M(5) 4086.24 4115.74 4086.47 4097.82 4100.99 4092.03 4081.31 

 M(6) 4087.16 4120.88 4087.46 4100.39 4104.02 4093.78 4081.32 

 M(7) 4075.45 4113.39 4075.82 4090.34 4094.42 4082.90 4081.32 

 M(8) 4076.95 4119.10 4077.40 4093.49 4098.03 4085.22 4081.33 

 M(9) 4078.91 4125.27 4079.45 4097.10 4102.09 4088.01 4081.33 

 M(10) 4079.72 4130.29 4080.36 4099.56 4105.00 4089.64 4081.34 

Table (3). Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 200, 500) for 

10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

6 M(1) 62.13 61.50 74.13 59.62 61.81 60.88 63.63 

 M(2) 62.13 61.29 102.13 58.79 61.71 60.46 65.13 

 M(3) 63.04 62.00 INF 58.87 62.52 60.96 66.63 

 M(4) 62.034 61.09 -21.66 57.34 61.71 59.84 77.13 

 M(5)        

 M(6)        

 M(7)        

 M(8)        

 M(9)        

 M(10)        

Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. Negative values are the lowest values, which refer to best criteria. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

8 M(1) 77.53 77.77 83.53 75.92 77.65 76.73 78.53 

 M(2) 78.98 80.00 92.32 76.84 79.14 77.91 79.33 

 M(3) 80.91 81.30 110.91 78.23 81.11 79.57 78.28 

 M(4) 81.06 81.54 165.06 77.85 81.30 79.46 82.53 

 M(5) 69.71 70.26 INF 65.96 69.99 67.83 86.53 

 M(6) 39.15 39.78 -104.85 34.86 39.47 37.01 98.53 

 M(7)        

 M(8)        

 M(9)        

 M(10)        
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Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

16 M(1) 158.02 160.33 160.02 158.14 159.18 158.08 158.45 

 M(2) 159.02 162.11 162.66 159.18 160.57 159.10 158.71 

 M(3) 160.87 164.73 166.87 161.07 162.80 160.97 156.27 

 M(4) 160.75 165.38 170.08 160.98 163.07 160.87 159.38 

 M(5) 162.71 168.12 176.71 162.99 165.42 162.85 159.82 

 M(6) 164.31 170.49 184.88 164.63 167.40 164.47 160.35 

 M(7) 166.11 173.06 196.11 166.46 169.58 166.28 161.02 

 M(8) 167.39 175.11 211.39 167.78 171.25 167.58 161.87 

 M(9) 167.08 175.58 233.08 167.52 171.33 167.30 163.02 

 M(10) 169.05 178.32 273.05 169.53 173.69 169.29 164.62 

Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

20 M(1) 202.59 205.58 204.09 203.18 204.09 202.88 202.93 

 M(2) 204.46 208.44 207.12 205.23 206.45 204.84 203.12 

 M(3) 200.76 205.74 205.05 201.74 203.25 201.25 200.53 

 M(4) 202.72 208.69 209.18 203.89 205.71 203.30 203.59 

 M(5) 204.67 211.64 214.00 206.03 208.15 205.35 203.88 

 M(6) 205.02 212.99 218.11 206.58 209.00 205.80 204.21 

 M(7) 203.12 212.08 221.12 204.87 207.60 203.99 204.59 

 M(8) 205.08 215.03 229.52 207.02 210.06 206.05 205.05 

 M(9) 204.76 215.72 237.76 206.90 210.24 205.83 205.59 

 M(10) 204.74 216.69 249.32 207.08 210.72 205.91 206.26 

Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

30 M(1) 289.77 293.98 290.70 291.11 291.87 290.45 289.99 

 M(2) 291.68 297.29 293.28 293.48 294.49 292.58 290.11 

 M(3) 290.47 297.48 292.97 292.71 293.97 291.59 287.35 

 M(4) 291.17 299.58 294.82 293.86 295.37 292.51 290.37 

 M(5) 292.68 302.49 297.77 295.81 297.58 294.25 290.52 

 M(6) 294.41 305.62 301.27 297.99 300.01 296.20 290.69 

 M(7) 295.55 308.16 304.55 299.59 301.86 297.57 290.86 

 M(8) 296.45 310.46 308.03 300.93 303.45 298.69 291.06 

 M(9) 298.40 313.81 313.07 303.33 306.11 300.87 291.27 

 M(10) 299.96 316.77 318.31 305.33 308.36 302.64 291.51 

Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

50 M(1) 476.88 482.62 477.40 479.07 479.75 477.97 477.01 

 M(2) 475.97 483.62 476.86 478.88 479.79 477.43 477.07 

 M(3) 477.97 487.53 479.33 481.61 482.75 479.79 474.21 

 M(4) 476.47 487.94 478.42 480.83 482.20 478.65 477.22 

 M(5) 476.99 490.37 479.65 482.08 483.68 479.54 477.29 

 M(6) 478.89 494.18 482.40 484.71 486.54 481.80 477.37 

 M(7) 479.90 497.11 484.40 486.45 488.50 483.17 477.45 

 M(8) 477.55 496.67 483.19 484.83 487.11 481.19 477.54 

 M(9) 479.31 500.34 486.26 487.32 489.83 483.32 477.63 

 M(10) 479.93 502.88 488.37 488.67 491.40 484.30 477.73 
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Table (3). continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 200, 

500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

100 M(1) 972.97 980.79 973.22 976.14 976.88 974.55 973.03 

 M(2) 973.76 984.18 974.18 977.98 978.97 975.87 973.07 

 M(3) 975.63 988.65 976.26 980.90 982.14 978.26 970.13 

 M(4) 977.62 993.25 978.52 983.95 985.44 980.78 973.13 

 M(5) 979.46 997.69 980.67 986.84 988.58 983.15 973.16 

 M(6) 980.95 1001.79 982.53 989.38 991.37 985.16 973.20 

 M(7) 982.91 1006.36 984.91 992.40 994.63 987.66 973.23 

 M(8) 984.48 1010.53 986.95 995.03 997.51 989.75 973.27 

 M(9) 985.22 1013.88 988.22 996.82 999.55 991.02 973.31 

 M(10) 986.86 1018.13 990.45 999.52 1002.50 993.19 973.34 

Table (3). Continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 

200, 500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

200 M(1) 1963.30 1973.20 1963.42 1967.31 1968.25 1965.30 1963.33 

 M(2) 1959.29 1972.49 1959.50 1964.63 1965.89 1961.96 1963.35 

 M(3) 1960.88 1977.37 1961.19 1967.56 1969.13 1964.22 1960.38 

 M(4) 1962.63 1982.42 1963.07 1970.64 1972.53 1966.64 1963.38 

 M(5) 1963.26 1986.35 1963.85 1972.61 1974.81 1967.93 1963.39 

 M(6) 1965.13 1991.51 1965.88 1975.80 1978.32 1970.47 1963.41 

 M(7) 1965.72 1995.41 1966.67 1977.74 1980.56 1971.73 1963.42 

 M(8) 1967.41 2000.39 1968.57 1980.76 1983.90 1974.08 1963.44 

 M(9) 1969.26 2005.54 1970.66 1983.94 1987.40 1976.60 1963.46 

 M(10) 1970.27 2009.85 1971.94 1986.28 1990.06 1978.28 1963.48 

Table (3). continued: Criteria of Model Selection when signal-to-noise ratio (SNR) is 1:1. A sequence of sample sizes are used (n=6, 8, 16, 20, 30, 50, 100, 200, 

500) for 10 nested models. 

Sample size (n) Model AIC BIC AICc HQC AVGAB AVGAH AVGACc 

500 M(1) 4774.42 4787.06 4774.47 4779.38 4780.74 4776.90 4774.43 

 M(2) 4776.34 4793.20 4776.42 4782.95 4784.77 4779.65 4774.44 

 M(3) 4778.01 4799.08 4778.13 4786.28 4788.54 4782.14 4771.45 

 M(4) 4777.59 4802.88 4777.76 4787.51 4790.23 4782.55 4774.45 

 M(5) 4779.39 4808.89 4779.62 4790.96 4794.14 4785.18 4774.46 

 M(6) 4780.31 4814.03 4780.60 4793.54 4797.17 4786.93 4774.46 

 M(7) 4768.60 4806.53 4768.97 4783.49 4787.57 4776.04 4774.47 

 M(8) 4770.10 4812.25 4770.55 4786.64 4791.17 4778.37 4774.48 

 M(9) 4772.06 4818.42 4772.60 4790.25 4795.24 4781.16 4774.48 

 M(10) 4772.87 4823.44 4773.51 4792.71 4798.15 4782.79 4774.49 

Table (4). The AIC weights by model, sample size n=100, and different regressors used in each model according to the second simulation study (second group) 

with signal-to-noise ratio (SNR) is 1:0.5. 

Model Regressors used AIC Delta ∆i Weight wi 

M(3) x1,x2,x3 64.72 0.00 0.34 

M(1) x1 66.54 1.83 0.14 

M(4) x1,x2,x3,x4 66.67 1.96 0.13 

M(7) x1,x2,x3,x4,x5,x6,x7 67.07 2.35 0.11 

M(2) x1,x2 68.41 3.69 0.05 

M(5) x1,x2,x3,x4,x5 68.62 3.90 0.05 

M(10) x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 68.70 3.98 0.05 

M(9) x1,x2,x3,x4,x5,x6,x7,x8,x9 68.72 4.00 0.05 

M(6) x1,x2,x3,x4,x5,x6 68.97 4.26 0.04 

M(8) x1,x2,x3,x4,x5,x6,x7,x8 69.03 4.31 0.04 
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Table (5). The AICc weights by model, sample size n=100, and different regressors used in each model according to the second simulation study (second group) 

with signal-to-noise ratio (SNR) is 1:0.5. 

Model Regressors used AICc Delta ∆i Weight wi 

M(1) x1 68.04 0.00 0.52 

M(3) x1,x2,x3 69.00 0.96 0.32 

M(2) x1,x2 71.07 3.03 0.11 

M(4) x1,x2,x3,x4 73.13 5.09 0.04 

M(5) x1,x2,x3,x4,x5 77.95 9.91 0.00 

M(6) x1,x2,x3,x4,x5,x6 82.07 14.02 0.00 

M(7) x1,x2,x3,x4,x5,x6,x7 85.07 17.02 0.00 

M(8) x1,x2,x3,x4,x5,x6,x7,x8 93.47 25.43 0.00 

M(9) x1,x2,x3,x4,x5,x6,x7,x8,x9 101.72 33.67 0.00 

M(10) x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 113.27 45.22 0.00 

Table (6). The BIC weights by model, sample size n=100, and different regressors used in each model according to the second simulation study (second group) 

with signal-to-noise ratio (SNR) is 1:0.5. 

Model Regressors used BIC Delta ∆i Weight wi 

M(1) x1 69.53 0.00 0.40 

M(3) x1,x2,x3 69.69 0.16 0.37 

M(2) x1,x2 72.39 2.86 0.10 

M(4) x1,x2,x3,x4 72.65 3.11 0.08 

M(5) x1,x2,x3,x4,x5 75.59 6.06 0.02 

M(7) x1,x2,x3,x4,x5,x6,x7 76.03 6.50 0.01 

M(6) x1,x2,x3,x4,x5,x6 76.94 7.41 0.00 

M(8) x1,x2,x3,x4,x5,x6,x7,x8 78.99 9.45 0.00 

M(9) x1,x2,x3,x4,x5,x6,x7,x8,x9 79.67 10.14 0.00 

M(10) x1,x2,x3,x4,x5,x6,x7,x8,x9,x10 80.64 11.11 0.00 

Table (7). Bias square , predicted mean square error(PMSE),and 95% confidence intervals (CI's) of the coefficient in model selection compared to model 

averaging  for  in the second group simulation study, sample size n=100, and with signal-to-noise ratio (SNR) is 1:0.5. 

Coefficient 

Model 
β
�

ˆ
 1

β̂  
2

β̂  3
β̂  4

β̂  5
β̂  6

β̂
 7

β̂
 8

β̂
 9

β̂
 10

β̂
 

M(1) 1.102 -1.362          

M(2) 1.037 -1.364 0.249         

M(3) 1.050 -1.353 0.220 2.453        

M(4) 1.056 -1.359 0.214 2.464 3.889       

M(5) 1.087 -1.463 0.123 2.447 3.866 1.536      

M(6) 1.053 -1.590 0.102 2.417 3.757 1.471 -0.137     

M(7) 1.109 -1.613 0.136 2.425 3.795 1.452 -0.138 1.276    

M(8) 1.090 -1.618 0.074 2.574 3.756 1.386 0.019 1.182 1.934   

M(9) 1.096 -1.144 0.092 2.530 4.196 1.509 0.366 1.219 1.888 -0.632  

M(10) 1.127 -1.546 0.110 2.707 4.116 1.612 0.451 1.296 1.837 -0.810 1.911 

Model -Averaged 1.248 0.724 1.99 3.767 4.052 1.017 1.127 1.658 1.060 1.408 1.493 

Bias2 of model averaged 0.062 0.076 0.0001 0.588 0.003 0.0003 0.016 0.433 0.0036 0.166 0.243 

Bias2 of model selection 0.007 5.958 3.433 2.248 0.008 0.235 0.760 0.060 0.785 2.962 0.830 

PMSE of model selection 2.526 9.084 6.185 4.629 2.678 2.167 3.600 2.314 3.025 5.360 3.415 

PMSE of model averaged 0.142 0.195 0.111 0.722 0.119 0.158 0.154 0.655 0.096 0.275 0.497 

CI of model selection 0.569 0.278 0.638 0.959 0.951 0.905 0.859 0.869 0.869 0.854 0.844 

CI of model averaging 0.999 0.945 0.999 0.999 0.999 0.978 0.993 0.998 0.998 0.999 0.989 
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Appendix (B) 

 

Figure 1.1. n=20. 

 

Figure 1.2. n=30. 

 

Figure 1.3. n=50. 

 

Figure 1.4. n=100. 

 

Figure 1.5. n=200. 

 

Figure 1.6. n=500. 

Figure (1). All Possible Regression with different sample sizes, 

n={20,30,50,100,200,500) when SNR is 1:0.5. 

 

Figure (2). Bias of Model Selection and Model Averaging of the Regression 

Coefficient estimates for the multivariate linear regression model(42). 
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