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Abstract: This paper proposed a transformed method of SUR model which provided unbiased estimation in case of two and 

three equations of high and low co-linearity for both small and large datasets. The generalized least squares (GLS) method for 

estimation of seemingly unrelated regression (SUR) model proposed by Zellner (1962), Srivastava and Giles (1987),provided 

higher MSE. Although the Ridge estimators proposed by Alkhamisi and Shukur (2008) provided smaller MSE in comparison 

with others, it was not unbiased in case of severe multicollinearity.This study showed that our proposed method typically 

provided unbiasedestimator with lower MSE and TMSE than traditional methods. 
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1. Introduction 

A set of equations that might be related not because of they 

interact, but also their error terms were related.A seemingly 

unrelated regression (SUR) system comprises several 

individual relationships that were linked by the fact that their 

disturbances were correlated. There were two main 

motivations for use of SUR. The first one was to gain 

efficiency in estimation by combining information on 

different equations and second motivation was to impose 

and/or test restrictions that involved parameters in different 

equations. The usual assumed requirement for the estimation 

of SUR model might be paraphrased as the sample size must 

be greater than the number of explanatory variables in each 

equation and at least as greater as the number of equations in 

the system. Such a statement was flawed in two respects. 

First, sometimes the estimators required more stringent 

sample size than impliedby this statement. Second, the 

different estimators might have different sample size 

requirements. Thevariance component model resulted in a 

certain type of correlation among the residuals. The residuals 

for each cross-section unit were correlated over time, but the 

residuals for different cross-section units were uncorrelated. 

The type of correlation would arise if each cross-section unit 

had a specific time invariant variable omitted from the 

equation. In the Seemingly Unrelated Regression model 

introduced by Zellner(1962), the residual were uncorrelated 

over time but correlated across cross-section units.  

Mathematically it showed in the following form, 

Cov(eit,ejs)=σij,if t=s 

= 0 ,if t ≠ s 

This type of correlation arised if there were some omitted 

variables that were common to all equations. Both these 

models, in principle, be extended to include the other types of 

correlation. Also, in both the models it was possible to apply 

tests for equality of the slope coefficients before any pooling 

was done. For the Seemingly Unrelated Regression model 

first we estimated each equation separately by ordinary least 

square (OLS) method. After that, we obtained the estimated 

residuals eit. From these estimated residuals we computed the 

estimation of covarianceσij. 

Where,σij=
1

T-K
it jte e′∑  

Where k was the number of regression parameters 

estimated. After we estimatedσij, we re-estimated all the N 

cross-sectional equations jointly, using generalized least 

square method.  

A number of methods were available for estimation of 

SUR type of models. Such as ordinary least squares (OLS) 

method, generalized least squares method (GLS) proposed 

Zellner (1962), generalized least squares method (GLS) 

proposedSrivastava and Giles (1987), SUR ridge regression 

method proposed M. A. Alkhamisi and G.Shukur(2008), 

optimality of least squares in the SUR Model proposed 

Dwivedi T. D, Srivastava V. K. (1978) etc. There were some 

limitations of existing methodswhichgave large MSE in case 

of high multicollinearity in the data set, for a large number of 

cross-section units the methods were not reasonable and 



 American Journal of Theoretical and Applied Statistics 2015; 4(3): 150-155  151 

 

might be affected by the common omitted variables.In this 

study we suggested a new method which would be able to 

estimate the SUR model more efficiently and the new 

approach might be expected to be superior to the traditional 

methods. 

2. Literature Review 

In econometrics, the seemingly unrelated regressions 

(SUR) or seemingly unrelated regression equations (SURE) 

model, proposed by Arnold Zellner in (1962) and in 

(1963),Stewart G. W. (1980) and Parks R. W.(1967) were a 

generalization of a linear regression model that consisted of 

several regression equations, each having its own dependent 

variable and potentially different sets of exogenous 

explanatory variables. Each equation was a valid linear 

regression on its own and couldbe estimated separately, 

which was why the system was called seemingly unrelated, 

although some authors suggested that the seeminglyrelated 

term would be more appropriate, since the error terms were 

assumed to be correlated across the equations. The model 

would be estimated equation-by-equation using standard 

ordinary least squares (OLS). Such estimates were 

consistent, however generally not as efficient as the SUR 

method, which amounts to feasible generalized least 

squares with a specific form of the variance-covariance 

matrix. Two important cases when SUR was in fact 

equivalent to OLS, were either when the error terms in fact 

uncorrelated between the equations (so that they were truly 

unrelated), or when each equation contained exactly the 

same set ofregressorson the right-hand-side. The SUR 

model could be viewed as either the simplification of the 

general linear model where certain coefficients in matrix Β 

were restricted to be equal to zero, or as the generalization 

of the general linear model where the regressors on the 

right-hand-side were allowed to be different in each 

equation. M. Hubert, T. Verdonck and O. Yorulmaz (Priprint) 

proposed a fast algorithm, FastSUR, and show its good 

performance in a simulation study and diagnostics for 

outlier detection and illustrate them on a real data set from 

economics. They focused on the General Multivariate Chain 

Ladder (GMCL) model that employs SUR to estimate its 

parameters. O. B. Ebukuyo, A. A. Adepoju and E. I. 

Olamide (2013) examined the performances of the SUR 

estimator with varying degree of AR(1) using Mean Square 

Error (MSE), the SUR estimator  performed better with 

autocorrelation coefficient of 0.3 than that of 0.5 in both 

regression equations with best MSE. Z. Zeebari and G. 

Shukur (2012) examined the application of the Least 

Absolute Deviations (LAD) method for ridge type 

parameter estimation of Seemingly Unrelated Regression 

Equations (SURE) models. M. El-Dereny and N. I. 

Rashwan (2011) has solved the equation in case of 

multicollinearity by Ridge Regression model, but not 

solving the SUR model in presence of multicollinearity in 

the data set. 

3. Methodology 

Different forms of generalized least squares method for the 

estimation of SUR model had been verified. Theoretical 

aspects of proposed methods such as GLS1, GLS2, and GLS3 

for estimating SUR model had been described. We also 

showed the unbiasedness and variance property of each 

proposed estimator. It hadbeen found that GLS3 estimator 

provided less variance and less MSE compared to other 

proposed estimators. This study showed that the proposed 

method typically provided unbiased estimator with lower 

MSE and TMSE than traditional methods in case of severe 

multicollinearity. The methods are as follows:Let us assumed 

that there were Nresponse variables each with T observations 

denoted by vectors y1, y2,…... ,ytwith associated explanatory 

variables x1,x2,……..,xt respectively. One way of fitting these 

models was to treat them as unrelated multiple regression 

models of the form, 

Yi=Xiβ+ei    (3.1) 

Where βwas a vector of unknown regression parameters 

and ei was a vector of random errors with each element 

having variance σ
2

i for i=1, 2,…………….., N 

Let, 
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By assumption, 

E(ei ej´)=σijI     i, j=1,2,……..,N 

Where,σij= 1
T

it jte e′∑ andE(ee
´
)= Σ ⊗ ITwas 

thecovariance matrix capturing the variances and covariance 

of the random error terms of (3.1), then the SUR form of this 

model was 

Y=Xβ+e   (3.2) 

Therefore SUR formulation of the regression models 

produced more efficient regression parameter estimates using 

proposed generalized least squares.  

Some properties of proposed GLS estimators follow: 

GLS1: Let us considered, the following transformation, 

Y* = 
 
(D⊗IT)Y X* = (D⊗IT)X e* = 

 
(D⊗IT)e 

Where, D was any orthogonal matrix. [Ali, M. I. (1984)] 

and ⊗ was a kronecker product(Anderson T. W 1984). Using 

the above transformation the model in (3.2) be expressed as, 

Y* =X*β+ e*   (3.3) 

Where, Y* and e* were NT×1 vectors, X* was an NT×n 
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matrix. 

E(e* e*´)=Σ ⊗ IT and E(e*)=0 

Then the GLS1 estimator of βin (3.1) was 

∧
β GLS1 = ( X*´ X*)

-1
 X*´ Y* 

= (X´(D2IT )X)-1 X´(D2IT )Y              (3.4) 

Where, D was an orthogonal matrix. 

Theorem: β
∧

GLS1was an unbiased estimator ofβ. 

E (
∧
β GLS1) =β 

Theorem:V(
∧
β GLS1)= E[{

∧
β GLS1-E(β )} {

∧
β GLS1-

E(β)}´]Rahman M. (2008) 

=(X´(D
2⊗IT)X)

-1
 X´(D

2⊗IT)(Σ ⊗ IT )(D
2⊗IT)X 

(X´(D
2⊗IT)X)

-1 

GLS2 :Let us considered, the following transformation, 

Y* = (Σ−1 ⊗IT) Y X* = XΣ−1 e* = eΣ−1
 

Using the above transformation the model in (3.2) be 

expressed as, 

Y* =X*β+ e*                         (3.5) 

Where, Y* and e* were NT×1 vectors, X* was an NT×n 

matrix. 

E (e* e*´)=Σ ⊗ IT  and E(e*)=0 

When Σ was known then the GLS estimator of ß in (3.5) 

was 

β
∧

GLS2 = (X*´ X*)
-1

 X*´ Y* 

= (Σ−1
X´XΣ−1

)
-1Σ−1

X´(Σ−1 ⊗IT)Y 

When the covariance matrix Σ (Alan J. L 2004)was 

unknown, a feasible generalized least squares (FGLS) 

(Johnston J, DiNardo J. 1963, 1972 and 1984) estimator was 

defined by replacing the unknown Σ with a consistent 

estimateΣ
∧

was given by, 

Σ
∧

= 

∧
ijσ

= T

1 ∑
=

′
T

t

jtitee
1  

Then,  

∧
β GLS2= (Σ^−1

X´XΣ^−1
)

-1Σ^−1
X´ (Σ^−1 ⊗IT)Y (3.6) 

Theorem: β
∧

GLS2 was not an unbiased estimator of β. 

E(
∧
β GLS2) ≠ β  

Theorem:V(
∧
β GLS2)= E[{

∧
β GLS2-E(β )} {

∧
β GLS2-E(β )}´] 

= (Σ^−1
X´XΣ^−1

)
-1Σ^−1

X´(Σ^−1 ⊗IT)XΣ^−1
 (Σ^−1

X´XΣ^−1
)

-1
 

GLS3 :Again, let us considered, the following 

transformation, 

Y* = (Σ−1 ⊗IT) Y,    X* = (Σ−1⊗IT) X,    e* = (Σ−1⊗IT)e 

Using the above transformation the model in (3.2) be 

expressed as, 

Y* =X* β + e*               (3.7) 

Where, Y* and e*   were NT×1 vectors, X* was an NT×n 

matrix 

E(e* e*´)=Σ ⊗ IT and E(e*)=0 

When Σ was known then the GLS3 estimator of β in (3.7) 

became 

β
∧

GLS3 =(X*´ X*)
-1

 X*´ Y* 

= [{(Σ−1 ⊗IT)X}´{(Σ−1 ⊗IT)X}]
-1

{(Σ−1 ⊗IT)X}´{(Σ−1 ⊗IT)Y} 

= (X´Σ−2
X)

-1
 X´Σ−2

Y                       (3.8) 

When the covariance matrix Σ was unknown a feasible 

generalized least squares (FGLS) estimator was defined by 

replacing the unknown Σ with a consistent estimateΣ
∧

 was 

given by, 

∧

Σ = ijσ
∧

=
T

1

1

T

jt

t

eite

=

′∑  

Then,  

∧
β FGLS3=(X´Σ^−2

X)
-1

 X´Σ^−2
Y             (3.9) 

Theorem:
∧
β GLS3 was an unbiased estimator ofβ. 

E (
∧
β GLS3) =β 

Theorem: V(

∧
β

GLS3)= E[(

∧
β

GLS3-β) (

∧
β

GLS3-β)´] 

={X´(Σ^−2⊗IT)X}
-1

 {X´(Σ^−3⊗IT)
 
X}{X´(Σ^−2⊗IT)X}

-1 

It had been found that GLS3 estimator provided less 

variance and less MSE compared to other proposed 

estimators such as GLS1 and GLS2, so that, 
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V (
∧
β GLS3) < V (

∧
β GLS2) <V (

∧
β GLS1) 

The results were verified using real data and simulated 

data. The empirical results were presented in Table 1, 2. The 

results were also compared with the aid of graphs.  

Table 1. System-wise estimated MSEs and TMSEs for the different methods of observation, N =2 equations, T=8, 16, 32 observations. 

Types of 

Data 
Observation  OLS 

GLS(Zellner, 

1962) 

GLS(Srivastava 

and Giles,1987) 

Ridge Estimator 

for SUR Model 
GLS1 GLS2 GLS3 

Based on 

Real Data 

T=8 
MSE 0.00588 0.000012 0.000012 0.000020 0.00970 0.00000205 0.000000073 

TMSE 0.13370 0.133672 0.133672 0.133672 0.13370 0.44457 0.22764 

T=16 
MSE 50.3009 0.044025 0.044025 0.044025 82.4437 0.00289 0.00524 

TMSE 0.04873 0.048655 0.048655 0.048654 0.04873 0.06082 0.04907 

T=32 
MSE 203.058 0.092769 0.092769 0.092770 269.283 0.01521 0.01879 

TMSE 0.02042 0.020404 0.020404 0.020404 0.02042 0.02274 0.02042 

Based on  

Simulated 

Data 

T=8 
MSE 0.55654 0.710668 0.770346 1.314708 0.75496 0.81591 0.51844 

TMSE 0.00110 0.001073 0.001069 0.001076 0.00107 0.00041 0.00119 

T=16 
MSE 0.88032 0.765417 1.045613 0.832161 0.93289 1.11909 0.70974 

TMSE 0.00052 0.000513 0.000511 0.000509 0.00051 0.00041 0.00053 

T=32 
MSE 0.95541 1.081081 0.775164 0.896703 0.99046 0.94065 1.03722 

TMSE 0.00021 0.000212 0.000214 0.000214 0.00022 0.00041 0.00021 

Table 2. System-wise estimated MSEs and TMSEs for the different methods of observation, N =3 equations, T=8, 16 observations. 

Types of 

Data 
Observation  OLS 

GLS(Zellner, 

1962) 

GLS(Srivastava 

and Giles,1987) 

Ridge Estimator 

for SUR Model 
GLS1 GLS2 GLS3 

Based on 

Real Data 

T=8 
MSE 340.019 21.70766 21.70766 21.70767 192.335 5.18659 5.18277 

TMSE 0.17382 0.121873 0.121873 0.121873 0.17382 1.98253 0.28204 

T=16 
MSE 720.778 0.938033 0.93803 0.93803 49.4244 0.05963 0.09554 

TMSE 0.06658 0.066237 0.06624 0.066237 0.06658 0.08839 0.06713 

Based on  

Simulated 

Data 

T=8 
MSE 0.81563 0.975524 1.10023 1.64572 1.24147 1.13131 0.41326 

TMSE 0.00118 0.001315 0.001177 0.00159 0.00173 0.00210 0.00160 

T=16 
MSE 1.04617 0.897032 1.05750 0.81005 1.20330 1.22188 0.92706 

TMSE 0.00082 0.000640 0.00051 0.000656 0.00054 0.00068 0.00076 

 

4. Sources of Data 

The data set was collected from a secondary sources the 

issues of the Federal Reserve Bulletin by G. S. Maddala 

(1988) : p. 364-365. Another data set was collected from the 

book of Introduction to Econometrics by D. N. Gujarati 

(1995): p. 351-353. Both the data set had severe 

multicollinearity and hence checked by different methods. In 

this paper considered variables were wage income, non-wage, 

the price of alternative financing to firms and production 

index. There were two independent variables, x1 wage 

income, x2 non-wage for the first set and x1 represented the 

price of alternative financing to firms, x2 represented 

industrial production index and represented firms’ 

expectation about future economic activity for the second set 

to estimate the two equations SUR model. Again we used 

three independent variables, x1 wage income, x2 non-wage, x3 

farm income for the first set and x1 represented the price of 

alternative financing to firms, x2 represented industrial 

production index and represents firms’ expectation about 

future economic activity, and x3 represented average prime 

rate charged by banks for the second set to estimate three 

equations SUR model. We analyzed the data by using the 

software R-Language (Version-2.9.2). 

5. Empirical Analysis 

Algorithms for data simulation of seemingly unrelated 

regressions (SUR) model: 

Step 1:For two equations, we had considered starting 

values the parameters ( 1β , 2β ) which were obtained from 

the real data by OLS methods. Based on these values we had 

simulated data for T=8, 16 and 32 observations. 

Step 2:For three equation, we had considered starting 

values of the parameters ( 1β , 2β , 3β ) which were obtained 

from the real data by OLS methods. Based on these values 

we had simulated data for T=8 and 16 observations. 

Step 3: By the similar way we repeated the simulation 

1000 times and we got 1000 estimates for each parameter. 

Then we took mean of the simulated estimates for each 

parameter.  

Step 4: These estimates were presented in a tabular form. 

Step 5: The above procedures were repeated for two 
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equations SUR model and three equations SUR model. 

6. Statistical Results 

From Table 1 it was seen that when the multicollinearity 

was high the MSE of two equations SUR model was larger 

by the methods of OLS (0.00588) and GLS (Zellner, 1962) 

(0.000012). The MSE obtained by the proposed method 

GLS3(0.000000073) was smaller than the other methods of 

estimation of two equations SUR model based on real data. 

But for the small observations (T=8) the TMSE in GLS3 

method of estimation of two equations SUR model was a 

small amount of outsized than others based on real data. It 

was seen that if we increased sample size, then the MSE’s 

reduced but the TMSE’s were approximately equal to the 

others on the basis of real data. If the sample size increased 

more, then the MSE’s and TMSE’s declined in case of  

proposed method GLS3 than other methods of estimation of 

two equations SUR model based on simulated data. Hence 

the table 1 showed that the method of GLS3 gave better 

estimate of SUR model in both cases of real data and 

simulated data with respect to MSE and TMSE criterion. 

Figure 1 showed that the MSE by the proposed method 

GLS3 was smaller in comparison with other methods. 
It was evident from Fig. 2 that the TMSE were 

approximately same for the different methods of estimation 

of two equations SUR model. From the figure we also seen 

that if we increased sample size, then TMSE’s increased in 

case of each methods for T<30 but the TMSE’s  declined for 

each methods for T>30,while for extremely large 

observations the TMSE  declined for the  methods of 

estimation of two equations SUR model based on different 

generating samples. 

Table 2indicated that the MSE and TMSE of three 

equations SUR model were larger than the two equations 

SUR model  based on both  real data and simulated data.  

Figure 3 showed that the MSE by the proposed method 

GLS3 was smaller in comparison with other methods. 
Figure 4 represented that the TMSE approximately same to 

the different methods of estimation of two equation SUR 

model. From the figure it was seen that if we increased 

sample size, then TMSE’s increased in case of each methods 

for T<30 but the TMSE’s  declined for T>30 and for 

extremely large observations the TMSE was strictly declined 

by the methods of estimation of three equations SUR model 

based on different generating samples. 

7. Results and Discussion 

It had been found that the ordinary least squares (OLS), 

generalized least squares (GLS) by Zellner (1962), 

generalized least squares (GLS) by Srivastava and Giles 

(1987) all were unbiased, but the SUR ridge estimator by M. 

A. Alkhamisi and G. Shukur (2008) was not unbiased. We 

had computed their variances and found that SUR ridge 

estimator by M. A. Alkhamisi and G. Shukur (2008) provided 

less MSE compared to others. We had also discussed 

multicollinearity, causes of multicollinearity, consequences, 

detection and removal methods of multicollinearity in 

brief.MSE and TMSE criterion had been used to measure the 

goodness of SUR estimators. We described theoretical 

concepts of our proposed methods viz. GLS1, GLS2 and GLS3 

for estimating SUR model for two and three equation. The 

proposed estimators were mainly defined on the basis of 

transformation or modification made in variables/matrix.  

The simulation results supported the hypothesis that the 

number of equations, the number of observations per 

equation, the correlation among explanatory variables and 

equations were the main factors that affected the inferential 

properties of SUR estimators. The fitness of the models were 

verified to the real data and simulated data. The goodness of 

the proposed models had been computed in terms of MSE 

and TMSE.  

The results showed that the MSE of GLS3 of the SUR 

estimator was consistently lower than the other existing 

estimators. Therefore, the GLS3 estimator performs better 

than other estimators when the errors were correlated 

between the equations and this could be considered as the 

best estimator of SUR model. 

8. Conclusion 

This study provided an approach to fitting SUR models 

when faced with some difficulties. Several methods of 

handling these were explored here and the simple approach 

of applying to estimate the SUR model by conditioning on all 

observations and iterating until estimates GLS3 method was 

computationally efficient and reasonably accurate.  

Finally, under certain conditions we might be suggested 

GLS3 as one of the good estimators to estimate the SUR 

(seemingly unrelated regression) model in the presence of 

high multicollinearity. We also suggested that the orthogonal 

transformation (GLS1) was less efficient to estimate the SUR 

model. Our study concluded that we would use our proposed 

estimator GLS3  in any type of real data (except time series 

data) for the best fitting of SUR model in case of severe 

multicollinearity. 

Hence the proposed method (GLS3) could be gained in 

estimator accuracy to other methods for small and large 

sample observations in terms of bias MSE and TMSE criteria. 

The practical applications of the seemingly unrelated 

regression (SUR) model where the proposed method of 

estimation can be applied in order to obtain better forecasting 

through efficient estimation of parameters involved are 

mentioned below: 

i. SUR model may be used to predict or forecast the total 

commercial loan on different causes such as average 

prime rate changed by bank, bank rate, total bank 

deposits etc. 

ii. SUR model can be applied to an environmental 

situation with missing data and censored values. 

iii. SUR model may be more appropriate to predict farm’s 

ability in meeting their current and anticipated 

obligations in the next 12, 9 and 3 months etc.  
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iv. SUR model may be applied for any type of 

simultaneous regression equations where their error 

terms are highly correlated. 

 

Figure 1. MSE’s among different methods of estimation of two equations of 

SUR model. 

 

Figure 2. TMSE’s among different methods of estimation of two equations of 

SUR model. 

 

Figure 3. MSE’s among different methods of estimation of three equations of 

SUR model. 

 

Figure 4. TMSE’s among different methods of estimation of three equations 

of SUR model. 
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