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Abstract: This article contains the optimum 3 step stress accelerated life test under cumulative exposure model. The
lifetimes of test units are assumed to follow a generalized Pareto distribution. The scale parameter of the used failure time
distribution at the constant stress level is assumed to have a log-linear and quadratic relationship with the stress. A comparison
between linear plan and quadratic plan by maximum likelihood estimators for the different sample sizes is shown in the table.
The optimum test plans is obtained by minimizing the asymptotic variance of the maximum likelihood estimator of the 100 P"
percentile of the lifetime distribution at normal stress condition for the model parameters. Tables of optimum times of changing
stress level for both plans are also obtained.
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1. Introduction

Due to the fast development in the technology, the
manufacturing plan is continuously improving. For this
reason it is difficult to obtain information about lifetime of
products or materials with high reliability at the time of
testing under normal conditions because testing under normal
operating conditions require a very long period of time and
need an extensive number of units under test. So it is
generally very expensive and impractical to complete
reliability testing under normal conditions. Hence, to handle
these problems, the study of accelerated life test (ALT) has
been developed. ALT makes it possible to quickly obtain
information on the life distribution of products by inducing
early failure with higher than normal stress. There are mainly
three types of life test methods in accelerated life testing
design. The first method is constant stress ALT, second is
step-stress ALT and the third is Progressive stress ALT. In
step stress accelerated life testing, the test items are subjected
to successively higher levels of stress at pre-assigned test
times. The level of stress is increased step by step until all
items have failed or the test stops for other reasons.

There are usually two types of step stress accelerated life
test (SSALT) plans, a simple SSALT and a multiple-step
SSALT. In the simple SSALT there is a single change of

stress during the test. Nelson (1990) presented the step stress
scheme with cumulative exposure model. Miller and Nelson
introduced (1983) a simple step-stress accelerated life test
(SSALT) plan in an exponential cumulative exposure (CE)
model. Bai et al. (1989) presented optimum simple step-
stress accelerated life tests with censoring. Xiong (1999) has
studied an exponential CE model with a threshold parameter
in the simple SSALT. Lu et al. (2002) considered the Weibull
CE model with the inverse power law in the simple SSALT.
In the multiple-step SSALT changes of stress are more than
once. Khamis and Higgins (1996) introduced first the
optimum three-step SSALT plan using quadratic stress-life
relationship assuming that the failure time follows an
exponential distribution using. Khamis (1997) extended the
2-step stress work for m-step stress ALT with k stress
variables using the exponential distribution, assuming
complete knowledge of the stress—life relation with multiple
stress variables. Khamis and Higgins (1998) proposed a new
model for SSALT as an alternative to the CEM, which is
based on a time transformation of the exponential CEM.
McSorley et al. (2002) has introduced the performance of
parameter-estimates in step stress accelerated life-tests with
various sample-sizes. Fard and Chenhua (2009) studied the
optimum step-stress accelerated life test design for reliability
prediction using Khamis—Higgins (K-H) model. Hunt and Xu
(2012) derived the optimum stress-changing time for the
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generalized K-H model by assuming that the lifetime of a test
unit follows a Weibull distribution for type-I censored data.
Alhadeed and Yang (2005) considered a simple SSALT plan
for optimal time of changing stress level using the Log-
Normal distribution.

2. The Model and Test Procedure
2.1. Generalized Pareto (GP) Distribution

The generalized Pareto (GP) distribution is also known as
the Pareto of second kind with two parameters or Lomax
distribution. This distribution has been widely used in the
field of reliability modeling and life testing. Bander Al-
Zahrani (2012) presented the maximum likelihood estimation
for generalized Pareto distribution under progressive
censoring with binomial removals. The life times of the test
items is said to have the generalized Pareto distribution if it
has the probability density function (PDF)

f(y)209(1+6’y)_(a+1) y>0,0,0>0 (1)
where 6 is the scale parameter and O is the shape parameter

of the distribution.
Now, the cumulative distribution function is given by

F(y)=1-

The survival function of the GP distribution is given by

F(y)=(1+6y)"

(1+6y)" »>0,a,6>0 ()
y>0,a,6>0 3)

And the corresponding hazard rate is given by

ab
(l+9y)

2.2. SSALT with Cumulative Exposure Model

h(y)=

According to the cumulative exposure model, the CDF in
SSALT for 3-step is given by

(1) 0st<r
F()=\B(t-n+8)  n<i<p @)
B(t-1+8)) nst<e

with S; the solution of F, (Sl) =H (Tl) and S, the solution
of I} (Sz) =F (T2 —-T +S1) . On solving we get

n n
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S, :ir1 and S, = L) -(r, —rl)+ﬂr1
62 63 63

Hence Generalized cumulative exposure model for 3 step
stress is as follow

1-(1+8¢)" 0<t<y
F()={1-[1+& (t-1,)+4r, " I, <t<r,
1-[1+6(t-1,)+6,(r, -7, "'617'1] I, st<o

The corresponding PDF for the cumulative exposure
model is given as above by equation (5)

ag(1+6:) 1 0st<r,
()=} a6 [1+6 (-7,) +4r T\ nst<n, (5)
a6[1+6(1-1)+6 (5, -1)+4n | <i<e
2.3. Assumptions
1. Testing is performed at the three stress levels

S;,S, and S5, where S} > §, > §;.

2. The lifetime of the test units follow a generalized Pareto
distribution under any stress.
3. The parameter @ is independent of time and stress.

4. The scale parameter &. at stress level i,i =1,2,3 is a
log linear function of stress given by (i) or (ii)

log 8. =a+bS; (1)

log6, = a+bS, +cS? (ii)

where, a, b and ¢ are unknown parameters on the nature of
the product and the test method.

A random sample of n identical units are initially placed on
low stress S| and run until pre-specified time 1, when the

stress is changed to high stress S, for those remaining units
that have not failed. The test is continued until pre-specified
time 1, when stress is changed to S;, and continued until all
remaining units fail

3. Likelihood Function

In order to obtain the MLE of the model parameters, lett
i=1,2,3, j=1,2,3,.. ..n;be the observed failure time of a
test unit j under the stress level i, where n; denotes the
number of units failed at the stress level i. The likelihood
function is given by

L(t’a’el’92’93): |_||:a91 (1_,_[1‘/91)_(0”)}'_'[0'92{1_'_([2‘/_rl) +T191 :‘ |_3||: { t3j )03+(T2_T1)92 +T191}_(g+1):| (6)
J= J= =l
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Log likelihood function of equation (6) can be written as . .
& 1 ©) 4. Optimum Linear Step-Stress Test

I =nloga +n,logf +n,logh, +n,log&
g 11085 Ty 1085 T 085 Using the relation log8 =a+bS;,i=1,2,3 , the log
likelihood function becomes

—(a+1){ilog(l+tuﬁl)+ilog[l+(t2j -5,)6, +r191J

j=1 j=1

+Zlog[1+(t3j r,)6 +(1, r1)6?+r19}}

l=n10ga'+n1(a +bS1)+n2 (a +sz)+n3 (a +bS3)

—(a'+1){§:10g(1+t1je"+bs1 ) +§:10g[1+(t2j —Tl)e‘”bs2 + Tle‘”bsl] (7
=1 Iz
+ilog|:l+(t3/— -1, )&% 4 (1, - 1) +r1e"+bS1J
=1
MLEs of a and b are obtained by solving the equations — =0 a dﬁ =0.
Oa 0b
ol _ < 4,6 < (th_Tl)02+T191 < (’3;‘72)93*'(72_71)92*'7191
—=n—-(a+1 + + (8)
oa " ( ){; (1+t1j91) =l [1+(12j —TI)HZ +r191] = |:1+(t3j —r2)93 +(1,-1,)6, +r191}
% =mS; +myS; +my Sy
LS8 & Sz(tzj rl)e +S,1,6 3( r2)9 +S2( -1,)6,+5,1,6 )
-(a+1 +
( ){;(H%HI) Z[H(tz;_rl)e +7,6 J Z;‘ [ b~ Tz 9 +( T1)92+T1‘91}
& 46 (fzj_Tl)Hz"'Tlgl N < (131‘_72)93"'(7'2_7'1)92"'7'191 (10)

j=l (1+tlj.6?1)2 j=l |:l+(t2j —rl)él2 +r16?1J2 j=1 [1+(z3j —r2)6?3 +(1,-1,)6, +r16?1J2

)92 +S871,6 +(S12 +5; —25152)919271 (fz./ _Tl)

il Slztljé’l i, S5 (tz_/ !
[1+(t2j -1,)6, +r16?1J2

+

b’ j=l (1+t1j6?1) j=1
53 (t3_/ _72)93 +83 (1, -1,)6, +S{1,6 "'(512 +85 _25153)919371 (t3j _Tz) (11)
R +(S12 +5; - 2S1S2)6’6? n(r,-1)+ (S2 +8; 2S2S3)6’26’3 (5, -1)(n 1))
J= |:1+(t3j—T2)93+(T2—T1)92+T191:|2
o =-(a+1 < Sin6 . nhoS, (tz,f‘71)92+517191 . S, (t3j—rz)493+S2(rz—rl)6?2+Slrlé?l
dadb 4 2L - oA i} - > (12)
= (1+t1j6}) =] |:1+(t2j TI)HZ +r16?1J = [1+(t3j r2)93 +(r,-1,)6, +r1¢91J

The Fisher information matrix is obtained by taking the  function. Fisher Information matrix is given by

negative second partial derivatives of the log-likelihood
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R
2

F = oa 0adb

o o

0b0a ob>

The log of the IOOp’h percentile of the lifetime ¢, (So) at

the design stress S is given by

1
3 -P)a-1
E(SO):log(tp(SO)):a+bSO+1og ( ;‘a
The Asymptotic variance is given by
AV (é(8y)) = 47 (108(1, (50)))
1
L (1-P)a -1 oo, (43
=AV|| a+bS, +log T =HFH

i
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A

0i(5)) 0£(s)) 04(s,)

Where H = — = =
da ob oa

and F|is the

asymptotic fisher information matrix.
Therefore, the optimal times 7, and 7, to change stress

levels under different values ofstresses and sample sizes will
be obtained numerically using equation (13) which

minimizes AV, ($ (S, )) .

5. Optimum Quadratic Step-Stress Test

For the quadratic model, using the log linear relationship

log6, =a+bS; +cS?,i=1,2,3. (14)

For this quadratic model, the testing can be done using a 3-
step, step-stress ALT. Thus, the log likelihood function (7)
can be extended to the quadratic model after substituting the

value of 9,. from equation (14) given by

[=nloga +n (a+bS1 +cS12)+n2 (a+b52 +0522)

m
+1 (a +bS, + cS32) -(a+1) {ZIOg[l + tljea+bsl+csf } +
=1

N _ a+bS, +cS3 a+bS, +cS? (15)
Zlog[l+(t2j r)e +7e }+
i=1
2 log [1 # (1) =1y )& IS (1, 1, ) SIS g S ST ]]
MLEs of a,b and c are obtained by solving the equations 1—0 1 0 ndﬂ—O
da 0b oc
ﬂ=n—(a’+l) ’Z’l: t1,,-91 N 1 (t T1)02+1'101 .\ ny (t3j—1'2)93 +(r2 r1)92+r191 (16)
da S(1+4,8) = [1+(,-1)6,+16] F[1+(t,-1,)6, +(1,~1,)6,+1,6 |
% =nS, +n,S, +n,S,
(@) Z S8, & S,(n,-1)6,+S1.6 &8 (t,-1,)6,+8,(1,-1,)6, +57,6 (17)
(1+1,8) = [1+(t 8+r0] = [1+(t3j—r2)93+(r2 r1)02+r1671]
%—nlS1 +n252 +n3S3
_(a'+l) > S12t1/9 + S Sz(tzf_rl)e +57n8 + S S32(t3/‘_r2)63+S22(72 7)6,+sin6 | (19
1""11 = [H b Tl 9 +T19] = [1*'([3,‘Tz)93+(T2‘T1)92+T151]
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6_212_(a+1) & 4,6 N - (t2j_rl)92+rlel (’3_/‘_T2)93+(T2_T1)62+T191 (19)
o j=1 (1+f1j91)2 J=l [1+(t2j —r1)¢92 +r191]2 j=l [1+(t3j —r2)63 +(1,-1,)6, +r191]2
9% L, Sin;6 n 83 (t2j _7'1)92 +S5'1,6 +(S12 +S; _25132)319271 (t2j _7'1)
_2:_(a+1 —t 2
ob = (1+4,6) [1+(t2j -1,)6, +r1€1}
S? (z3j —r2)6?3 +55 (1, -1,)6, + P16 +(S12 +87 —2S1S3)6?16?3r1 (z3j —rz) 0
& +(s7+53-25,5,)86,1, (1, = 1,) +(53 +57 -25,5,)6,6, (15, -1, ) (1, - 73)
I=] [1+(t3j—r2)6’3+(r2—r1)6?2+r16’1J2
LZZ:_( o) l Sf‘tljé’1 . - Sg(th_Tl)HZ+SflT1H1 +(Sf‘+S;_2512522)5152T1 (tzj' _71)
oc? I (1+t1,6€)2 I [1+(t2j —r1)62+r161}2
Sy (t3j —T2)93 +55(r,-1,)6 +5/76 "'(514 +53 _2512532)9193T1 (fsj ‘Tz) @1
& +(S14 +53 _2512522)‘91‘9271(72 _71)+(S; +85 _2522532)‘92‘93(t3j _Tz)(TZ -n)
+
J=l |:1+(t3j_T2)63+(T2_r1)62+r191}2
o :‘(a+1 G Sit 6 . 2, S5, (t2j _71)‘92 "'5171‘912 . S5 (tSj _72)93 +85, (72 _71)‘92 +S171‘291 22)
9adb A (1+0,8) = [1+(t2j -1)6 +r16}} = [1+(t3j -1,)6, +(1, -1,) 6, +r16?1J
9% - (a+1 o S12t1j012+ Z Szz(tzj—rl)492+512r1912+ < Szz(’zj_T2)93+522(T2‘T1)52+512T1§ 23)
9ade 7 (1+,6) = [1+(6,~n)e+06 | 5 [1+(6,-1)6 + (1) 8 +14 |
9% ——(a+1) u S13t1j91 - &, 83 (t2j _T1)92 +871,6 "'(Sl3 +85 - S¢S, _51522)9192T1 ([Zj _Tl)
0boc =1 (1+t1j91) j=1 |:l+(t2j —rl)z92 +r1z91}
S3 (t3j _Tz)gs +85(1,-1,)6, +S'1,6 +(S13 +55 - S'S, _51532)91935 (t3j _Tz) 24)
e "'(Sl3 +53 =S¢5, _S1S22)9192r1(r2 _T1)+(523 +55 =835, _SZS32)‘92‘93 (f3j _Tz)(TZ -1)
+

j=l [1+(t3j—r2)93+(r2—r1)z92+r1z91}2

Fisher Information matrix is given by

B
0a? 0a0b 0alc
|k 0%l 0’1
Fz - = -0 -
0b0a ob? 0boc
o 9 ol
| 0cOa 0cob oc? ]

Here the Optimum criterion is to obtain optimum stress

change time 7, and 7, .The log of the 100P" percentile of the

lifetime 7, (SO) at the design stress Sy is given as
ge(SO) = log(tp (SO)) =a+bS, +cSt +log

The asymptotic variance at the design stress Sy is then
given by
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AV, (é(8,)) = HE ' (25)

0(5,) 04(5,) 0£(5) 0é(s)

= — and
0a 0b oc oa

Where H =

F, is the fisher information matrix
Therefore, the optimal times 7, and 7, will be obtained
(25

numerically which  minimizes

an, (&(s,)).

using  equation

Table 1. The Maximum likelihood estimate and Mean Absolute Error for
a=0.0087.

Table 2. The results of optimal design of step-stress ALT for different sized
sample.

a=0.69 b=1.25 a=0.69 b=1.25 c=2.82
! nAv, T T2 nAvV, T T2
20 0.232 3.31 3.99 0.192 2.38 3.00
60 0.209 3.10 3.99 0.190 2.09 2.86
80 0.187 2.88 3.01 0.089 1.83 1.83
100 0.183 2.63 2.78 0.083 1.74 1.83
120 0.077 2.25 2.61 0.003 1.74 1.83

200 0.026 222 2.61 1.823¢7 1.74 1.83

Table 3. Compound Linear Test Plan Efficiencies

Quadratic case Linear case Efficiencies
n Parameter N A
Estimate MAE Estimate MAE Si Sz S; n Opt Linear  Opt Quadratic
91 4.67251 0.0089 5.98271 0.0998 20 0.67 0.74
R 60 0.62 0.77
20 o, 4.73645 0.0731 5.39875 0.8237 30 0.79 0.79
A 2.58 3.58 4.58
& 2.73511 0.0874 - - 100 0.76 0.80
) 419484 0.0046 5.76513 0.0957 120 0.72 0.83
A 200 0.72 0.85
60 o, 5.08365 0.0347 5.28436 0.6893
A 20 0.78 0.85
6 247452 0.0665 - - 60 0.80 0.87
91 4.08635 0.0038 5.57826 0.0765 80 0.81 0.88
. 3.58 4.58 5.58
80 b 471847 00043 526411 0.4796 o L s
) 2.27371 0.0569 120 083 0-20
% : ‘ i i 200 0.85 0.90
G 3.56356 0.0031 5.53912 0.0709 20 0.80 0.90
100 A2 437163 0.0067 5.24716 0.2987 60 0.88 0.92
é3 2.23144 0.0553 - - 4.58 558 6.58 e g O
. 100 0.89 0.96
G 3.25262 0.0008 5.51931 0.0035 120 0.89 0.96
120 A2 4.08947 0.0021 5.18754 0.1098 200 0.89 0.97
6 2.20937 0.0289 = =
2] 2.86746 1.298¢* 538756 0.0028 7. Conclusion
200 2 3.74562 0.0010 4.76581 0.1052 The present article deals with parameter estimation of
6 1.58456 0.0112 - = generalized Paretodistribution under 3 step stress ALT plan.

6. Simulation Study

A numerical study was conducted in order to investigate
the existence of the optimal stress change points and to
evaluate them as a function of varying parameters.
Simulations are performed to investigate the performances of
the MLEs through their mean absolute error (MAE) for both
relationships. Comparison between both plans is shown by
calculating efficiencies. Table 1 present the Maximum
likelihood estimates for n=20, 60, 80, 100 and 120 and their
respective Mean absolute Error for both Quadratic and Linear
relationship. Table 2 presents the results of optimal design of
step-stress ALT for different sized samples and finally Table
3 Compound Linear Test-Plan Efficiencies.

The objective is to plan a test that achieves the best reliability
estimates. Two types of relationship are assumed between
scale parameter and Stress. One links scale parameter
linearly with stress while other have quadratic relationship.
Comparison between both is shown by calculating estimates
and their respective error. Efficiencies for both plans are
calculated for different level of stress. Apart from that the
results of optimal design of step-stress ALT for different
sample size is shown. The performance of step-stress testing
plans and model assumptions are generally evaluated by the
properties of the maximum likelihood estimates of model
parameters. Estimates of quadratic are more stable with
relatively small Mean absolute error as sample size increases.
Maximum likelihood estimators are consistent and
asymptotically normally distributed. In short, it may be
concluded that the present step stress ALT plan works well
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and has a good choice to be considered in the field of
accelerated life testing.
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