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Abstract: The energy sector is regarded as a key driving force for all other sectors in the economy. This can be attributed to 

oil being the global main source of energy as well as oil prices having a significant impact on financial markets and world 

economies. With the emergence of relatively free oil markets, prices are vulnerable to high shifts resulting in increased 

exposure to price risk. This research project focuses on the oil markets with two main oil price benchmarks being used: Brent 

blend of Europe and WTI of United States of America. As opposed to estimating a single distribution for the entire return 

series generating process this research project focuses on the tails of the distributions using limit laws from the Extreme Value 

Theory. A two stage GARCH-EVT approach is preferred in the study. The focus is on the peak over threshold method for 

analysing the generalized Pareto distributed exceedances over some significantly high threshold. The results of this study 

reveal that oil prices are highly volatile, heteroscedastic and fat-tailed. In addition the GPD fits the tails adequately well and is 

used to estimate associated tail risks at sufficiently high probabilities. 
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1. Introduction 

The oil market is arguably one of the largest commodity 

markets in the world. This can be attributed to oil being the 

main source of energy globally. Financial analysts believe 

that oil price fluctuations have considerable consequences on 

businesses, governments and the global economic activity. 

[14] argues that changes in oil prices have an impact on 

economic activity. Economies that depend on oil for 

industrial purposes experience significant uncertainty during 

periods of high volatility resulting in high volatility of 

exports and consequently government revenues. For instance, 

higher crude oil prices contribute to inflation and results to 

recession in oil-consuming countries.  

The collapse of OPEC-administered pricing system in 

1985 led to the rise of competition and de-regulation 

resulting in relatively free oil markets characterized by high 

degree of price volatility. [16] noted that since 1986 the trend 

in oil prices has significantly changed from what happened 

prior in that large price decreases are common. Oil price 

shifts could result from reasons such as OPEC policies, 

imbalances between physical supply and demand as well as 

war and political uncertainty in oil producing countries. [8] 

show the impact of oil-related events to oil price volatility. 

Their results indicate that the impact of the global financial 

crisis on oil price returns is significantly negative, while the 

impact of the Libyan war and hurricanes is significantly 

positive. However, the reactions of oil price returns to 

different OPEC production announcements are inconsistent. 

Oil price risk is a major risk faced in the oil markets. This 

refers to the probability of loss occurring from adverse 

movements in the market price of crude oil. As a result, risk 

managers are faced with the challenge of implementation of 

effective risk models that have the capability to allow for rare 

events. The risk of extreme events is related to the tails of a 

distribution. Thus, a crucial challenge in getting good risk 

measure estimates is to be able to estimate the tail of the 

underlying distribution as accurately as possible. The value-

at-risk (VaR) approach is used mainly for risk management 

as it measures the worst anticipated loss over a period for a 

given probability and under normal market conditions. 

2. Related Works 

Similarly to the stylized facts of financial time series, oil 

prices have been shown to possess unique properties. [7] 

show that oil prices exhibit excess kurtosis and that 

volatility clusters over time. In addition, like other financial 

time series, crude oil series are characterized by fat tail 

distribution, volatility clustering, asymmetry and mean 
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reversion [11]. The implication of excess kurtosis is that 

there is more mass in the tail areas than can be explained by 

the normal distribution. 

[3] Quantified risk using VaR on Brent crude oil prices. 

They presented three kinds of VaR methods i.e. the historical 

simulation standard approach, the historical simulation with 

ARMA forecasts (HSAF) approach and the semi-parametric 

GARCH approach. They argue that although the historical 

simulation approach does not depend on any distribution of 

the underlying returns, the approach assumes that what 

happened in the past is a reflection of what will happen in the 

future. However, this may not necessarily be the case within 

the dynamic oil markets. Future risks may not necessarily be 

the same as historical risks more so in the case where high 

price shifts are observed. They further noted that the largest 

source of error in the parametric approaches used in their 

study was the assumption that returns are normally 

distributed. 

EVT has been widely used in various fields among them 

including finance [4]. It is important to note that EVT 

assumes the data under study are independently and 

identically distributed. A stylized fact of financial log-returns 

is that they tend to exhibit dependence in the second moment. 

In order to assess the risk of many financial transactions, 

estimates of asset return volatility are required. [13] suggest a 

two stage approach to address dependence of observations in 

applying extreme models to estimate tail risk.  

First, fit a GARCH-type model to the returns data by 

quasi-maximum likelihood. The second stage of the approach 

is to apply EVT to the GARCH residuals. As opposed to 

EVT, GARCH models do not focus directly on the tail 

returns. Instead by acknowledging the tendency of volatility 

to be time dependent, GARCH models explicitly model 

conditional volatility as a function of past conditional 

volatilities and returns [12]. 

Asymmetric GARCH models are used to examine the 

probable existence of leverage effects. Leverage effect refers 

to negative and positive shocks having varied impacts on 

volatility i.e. negative correlation between volatility and 

returns. This is an important aspect that must be incorporated 

if present. [11] used the univariate GARCH models to 

measure uncertainty associated with Brent crude oil prices. 

The preferred model was a symmetric GARCH (1,3) as 

asymmetric leverage effects were not found. [15] compared 

the performance of both symmetric and asymmetric volatility 

models for oil price using daily returns of WTI. Their 

findings indicate that, based on the appropriate model 

selection criteria, the asymmetric. GARCH models appear 

superior to the symmetric ones in dealing with oil price 

volatility. 

Financial disasters in the past have shown that indeed 

billions of dollars can be lost because of poor supervision and 

management of financial risks [6]. 

As opposed to other models that focus on the entire 

distribution, EVT focuses on the tail distribution of the 

returns. It provides a flexible and simple parametric model 

for capturing tail related behaviours. For that reason, it is not 

surprising that the extreme value based VaR is superior to the 

traditional variance-covariance and non-parametric methods 

in estimating extreme risks [1].  

The link between EVT and risk management is that EVT 

methods fit extreme quantiles better than the conventional 

approaches for heavy-tailed data [6]. 

The main objective is to quantify the outcomes of a 

stochastic process which have a small probability of 

occurrence whose effects are severe. VaR describes the loss 

that can occur over a given period at a given confidence 

level, due to exposure to market risk. 

3. Methodology 

[5] suggested the ARCH model as an alternative to the 

standard time series treatments that cannot adequately 

explain the property of heteroscedasticity. The AR comes 

from the fact that these models are autoregressive models in 

squared returns. The conditional comes from the fact that in 

these models, next period’s volatility is conditional on 

information this period. 

[2] extended the ARCH model of [5] to the generalized 

ARCH (GARCH) model. The virtue of this approach is that a 

GARCH model with a small number of terms appears to 

perform as well as or better than an ARCH model with many 

terms. In a GARCH model, returns are assumed to be 

generated by a stochastic process with time-varying 

volatility. This implies that the conditional distributions 

change over time in an auto-correlated way and the 

conditional variance is an autoregressive process. GARCH 

models provide an accurate assessment of variances and co-

variances through their ability to model time-varying 

conditional variances as they assume that the conditional 

variance is a deterministic linear function of past squared 

innovations and past conditional variances. A GARCH (p,q) 

model takes the form ��= ����, where: 

��� =  �	 +  ∑ �� ��
�� + ∑ ����
����������          (1) 

Where ��, is a sequence of i.i.d random variables and 

 � �� +  � ��
�

��� < 1�
���  

to ensure stationarity of the volatility process. 

�� ≥ 0, �� ≥ 0 

The non-negativity restrictions on the parameters ��  ��� �� ensure positivity of the variance ���. 
The lag length of the GARCH model is selected by the use 

of the Akaike Information Criterion (AIC) which is a 

penalizing criterion. 

The model with the lowest AIC value is selected to model 

the volatility process. 

Modelling time series with leptokurtic characteristics and 

volatility clusters has been widely studied leading to 
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extensions of the initial GARCH model proposed by [2]. One 

particular characteristic of the standard GARCH model is 

that it assumes positive shocks are equal to negative shocks 

of the same magnitude thereby having the same effect on 

volatility. (The signs of innovations have no effect on 

conditional volatility as only the squared innovations enter 

the conditional variance equation.) 

This aspect is referred to as the leverage effect. 

In accounting for conditional heteroscedasticity in oil 

return series it is important to take account of any present 

leverage effects to avoid biased and misleading results [15]. 

This study uses the asymmetric GJR-GARCH to check for 

leverage effect.  

The volatility process of the GJR-GARCH model is given 

by: 

��� = �	 + ∑ ��� 
 ����
�
  ��
�� 
 ∑ ����
����������       (2) 

Where, 

S"
 � # 0 , �" � 0 1 , �" � 0  

The supposed effect of the returns on the conditional 

variance ���  is different according to the sign of the 

innovation  �" . Hence the reason why the variable S"
  is 
introduced to the model. This implies that the model 
accommodates the presence of leverage effect. 

Diagnostic tests for the selected GARCH model is done 

through checking for serial correlation in the standardized 

residuals of the selected model.  

���, ��, … �� � %&� ' (̂��*� … &� ' (̂��*� + 

These should be i.i.d.  

Distribution of exceedances 

The peaks over threshold method is demonstrated in figure 

1. The method models the exceedances above a sufficiently 

high threshold u. 

 

Figure 1. Peaks over threshold method. 

Let ,�, ,�, … ,- be a sequence of i.i.d random variables 

from an unknown distribution function F. The interest is in 

estimating the distribution function ./ of the excess values of 

X over a high threshold u. Let ,0 be the finite or infinite right 
endpoint of the distribution F. 

Then the conditional distribution function of the excesses 

over the threshold u can be defined by; 

./�& � 1�, ' 2 3 &|, 5 2,                     (3) 

0 3 & 3 60 ' 2 

& � 6 ' 2 are the excesses and 60 3 ∞ is the right endpoint 
of F, that is 

./�& � 0�/89 
0�/ �
0�/ �  0�: 
0�/ �
0�/                 (4) 

Theorem: For a certain class of distributions, Balkema and 

De Haan (1974) and Pickands (1975) showed that the 

Generalized Pareto Distribution (GPD) is the limiting 

distribution for the distribution of excesses as the threshold 

tends to the right endpoint. 

./�& ; <=,>�& , 2 ? ∞  
The GPD is given by:  

GA,B�y � D1 ' E1 
 => &F
� =G  HI J K 0
1 ' L
9 >G  HI J � 0            (5) 

For & M N0, �60 ' 2O if J � 0 and & M N0, ' >=O if J � 0 

However, the choice of a threshold is crucial. There is a 

challenge between setting a high threshold value that reduces 

the sample size to an insufficient level to meet the asymptotic 

properties or setting a low threshold level that ends up with a 

sizeable sample size but with more of the non-extreme values 

in the estimation. Various methods can be considered when 

selecting an appropriate threshold. One of the methods is the 

graphical representation. The empirical mean excess function 

which refers to the sum of excesses over threshold u divided 

by the number of data points exceeding the threshold is 

defined as:  

L�2 � P�, ' 2|, 5 2  

L-Q�2 � ∑ �,�
2 -��� R�STU/ ∑ R�STU/ -��� �,�  

A plot of the mean excess function is used where an 

appropriate threshold is selected at the point the plot tends to 

be linear and positively sloped. 

Upon selection of an appropriate threshold the returns can 

then be modelled using the GPD with references to the 

following equations. 

.V�6 � �1 ' .�2  GA,B�X ' u 
 .�2              (6) 

.�2  can be approximated non-parametrically by: 
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.V�2 = 1 − Y/�  

Y/  represents the number of exceedances above the 

threshold u and � represents the sample size. 

Solving for the distribution .V�6  we obtain: 

.V�6 = Z[- \1 − ]1 + => �6 − 2 ^
� =VG _ + E1 − Z[- F   (7) 

.V�6 = 1 − Z[- ]1 + =V> �6 − 2 ^
� =VG                 (8) 

Inverting equation 8 for a given probability p we have the 

value at risk given by: 

`�abc = 2 + �dJ ]% �Y/ e+
=V − 1^ 

This study focuses on estimating price risk with a focus on 

the oil market. Extreme Value modelling provides a 

statistically justifiable model to capture the tails of the 

underlying data generating process.  

The volatility model is combined with EVT to estimate 

conditional extreme quantile over a one day period. The 

expected shortfall is a measure used to quantify the worst 

loss given that the value at risk was exceeded. 

P�fc = `�abc + P�, − `�abc|, > `�abc  

4. Empirical Results 

The data used in the study consists of daily prices of two 

main benchmarks (WTI and BRENT Blend) for the period 

1986-2015. 

4.1. Data Exploration 

 

Figure 2. Trends in crude oil prices. 

Figure 2 shows the general trend in oil prices. Crude oil 

prices for both series are fairly stable between 1986-1999. 

From 1999 up until mid-2008, the price significantly rises to 

a peak of $145 per barrel. However, a major shock is 

observed between 2007 and 2008 where the prices are 

consistently on a downward trend. Lows of $30.28 and 

$30.41 are observed for WTI and Brent respectively. 

Coincidentally this is about the same period as the global 

financial crisis of 2007-2010. The prices then rebound to an 

upward trend with significant volatility being experienced. 

Up until mid- 2014 the prices range between $90-$120. 

Towards the end of 2014 into early 2015, there is a 

decline in prices to a low of between $46.09-$44.08 per 

barrel. This can be attributed to increased production of 

American shale oil that created a surplus in the market 

resulting to decline in prices. 

Crude oil prices were transformed into log returns. Unlike 

the raw price data log returns tend to evolve as a stationary 

process. At 5% level of significance both return series are 

found to be stationary. 

Return series for both data sets are as shown in figure 3. 

 

 

Figure 3. WTI and Brent return series. 
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Both return series exhibit a kurtosis greater than that of a 

normal distribution and negative skewness. The implication 

of excess kurtosis is that there is more mass in the tail area 

than can be explained by the normal distribution. Similarly 

negative skewness indicates that the left tails tend to be 

heavier than the right tails. 

Table 1. Descriptive statistics of returns. 

 WTI Brent 

Data length 7456 7110 

Mean 0.000606 0.0001864 

Std.dev 0.024784 0.022443 

Skewness -0.2318976 -0.489066 

Kurtosis 10.61066 11.14741 

Jarque-Bera  35044 36840 

ADF (Statistic)  -18.287 -17.919 

ADF (p-value)  0.01 0.01 

The Akaike’s Information criterion (AIC) was used to 

select the best model based on the lowest value obtained. The 

GARCH (1, 1) model was selected as presence of leverage 

effects was not detected through the asymmetric GJR-

GARCH (1, 1) model. 

The estimated GARCH(1,1) model parameters are 

presented in table 2. 

Table 2. GARCH (1, 1) model parameters. 

 gh gi ji 

WTI 0.000006 0.095731 0.899545 

BRENT 0.000003 0.072379 0.924442 

At 5% level of significance all parameters were found to 

be significant. The standard GARCH(1,1) model yielded the 

smallest AIC indicating that it is adequate in describing the 

volatility process of both return series. The estimated 

leverage effect in the GJR-GARCH model was found to be 

positive and insignificant at 5% level of significance. 

The GARCH(1,1) model is thus found to be adequate in 

describing the volatility process. 

Correlograms of the standardized residuals and squared 

standardized residuals revealed absence of serial correlation. 

The standardized residuals are found to be i.i.d.  

4.2. Extreme Value Theory 

To capture for the assymetry in the tails, we analyse the 

tails separately as the left and right tail as per [10]. 

Appropriate threshold levels are selected using the sample 

mean excess plots.The values from which the plots tend to 

linearity and a positive slope are selected. The selected 

thresholds, number of exceedances and estimated generalized 

pareto model parameters are presented in tables 3 and 4. 

Figure 5 and 6 shows the fit of the excedandances to the 

fitted GPD model for the right and left tails respectively for 

both data series. The plots exhibit a generally good fit to the 

exceedances on the estimated model for the tails in both data 

series. The points on the qq plot lay on the straight line 

representing the estimated model indicating a good fit.  

Point estimates of the risk measures are then estimated at 

significantly high probability levels. 
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Note: WTI is presented on the top panel, Brent on the bottom panel 

Figure 4. Correlograms for standardized residuals and squared 

standardized residuals. 

 

Figure 5. Excess distribution for WTI left and right tails respectively. 

Table 3. Estimated GPD parameters for Brent right and left tails. 

 Threshold 
No.of 

exceedances 
k j 

Right tail 1.3 60 -0.2409189 1.0862891 

Left tail 1.5 39 0.03818405 0.59389695 

Table 4. Estimated GPD parameters for WTI right and left tails. 

 Threshold 
No.of 

exceedances 
k j 

Right tail 1.1 111 0.07711093 0.65462851 

Left tail 1.1 144 0.1839816 0.5911181 

 

Figure 6. Excess distribution for Brent right and left tails respectively. 

Table 5. Estimated risk measures for WTI left and right tails. 
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Left tail 0.990 3.254303 4.464347 

 0.995 3.984274 5.358920 

 0.999 6.085371 7.933794 
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 0.995 3.542873 4.456534 

 0.999 4.987753 6.022216 
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Table 6. Estimated risk measures for Brent left and right tails. 

 Probability(p) lmno pqo 

Left tail 0.990 3.254303 4.464347 

 0.995 3.984274 5.358920 

 0.999 6.085371 7.933794 

Right tail 0.990 2.973787 3.839869 

 0.995 3.542873 4.456534 

 0.999 4.987753 6.022216 

The results in Table 5 indicate that, with a confidence band 

of 99.0% the VaR values for the WTI left and right tail are 

3.254303 and 2.973787 respectively. Say with a financial 

position of $1 million dollars the value at risk values are 

$32,543 and $29,737 respectively. Given that these values 

are exceeded then, the expected shortfall values are 4.464347 

and 3.839869. For the said financial position then the 

expected shortfall values are $44, 6434 and $38,398 

respectively for the left and right tails. 

Similarly, with a confidence band of 95.0% the VaR values 

for the WTI left and right tails are 3.984274 and 3.542873 

respectively. With a financial position of $1 million dollars 

the value at risk values are $39,842 and $35,428 respectively. 

Given that these values are exceeded then, the expected 

shortfall values are 5.35892 and 4.456534. For the said 

financial position then the expected shortfall values are 

$53,589 and $44,565 respectively for the left and right tails.  

For higher confidence intervals such as 99.9% the Value at 

risk is 6.085371 and given that this is exceeded the expected 

shortfall is 7.933794. 

The results in Table 6 indicate that, with a confidence band 

of 99.0% given a financial position of $1 million dollars the 

value at risk is $28,241 and $32,387 for the Brent left and 

right tails respectively. Similarly, with a higher confidence 

band of 99.5 the VaR is $32,767 and $36,340 for the left and 

right tails respectively. Similar inferences can be drawn for 

the other values. 

5. Discussion 

This study aimed at modelling oil price risk. The GARCH-

EVT model was used to achieve the main study objective. 

The results revealed key characteristics of crude oil prices 

within the study period. The return series are mean reverting, 

leptokurtic, negatively skewed and fat-tailed relative to the 

Gaussian distribution. The standard GARCH and asymmetric 

GJR-GARCH models were used to model the volatility 

process. However, the asymmetric effect was found to be 

insignificant in both time series, hence the standard GARCH 

(1,1) concluded to be adequate in characterising the volatility 

process as per the Akaike's selection criteria. As opposed to 

estimating a single distribution for the entire series, the tails 

were modelled following limit laws from extreme value 

theory. Due to asymmetry in the tails, analysis of both left 

and right tails of the standardized residuals of the GARCH 

(1, 1) model exceeding respective thresholds showed that 

excesses are i.i.d and can be modelled by the GPD. The 

estimated shape parameters further indicated presence of 

heavy tails except for the Brent right tail that yielded -

0.2409189 for the shape parameter indicating a light tail. 

However, the left tails appear to be heavier as compared to 

the right tails as was observed in the shape index of the GPD. 

This is an indication that extreme events are mainly within 

the left tail as compared to the right tail. Diagnostic plots for 

the estimated GPD parameters indicated that the models fit 

adequately well. Point estimates of extreme tail risk measures 

were then estimated at sufficiently high probability levels. 

6. Conclusion and Recommendation 

Presence of high volatility within oil markets leads to the 

requirement of implementation of effective risk models. [9] 

results on tail distribution modelling show that tail- related 

risk measures such as Value-at-Risk and expected shortfall 

can be modelled using extreme value theory. A conditional 

approach is favoured in this study as temporal dependence 

within crude oil daily returns was detected in the data series. 

EVT provides sound statistical methodology for modelling 

tail related risk measures. Application of EVT captures the 

heavy-tailed behaviour of the crude oil returns and the 

asymmetric characteristics in the distribution is captured by 

treating the left and right tails separately.  

This study favours the peaks over threshold method as it 

tends to utilize data more efficiently. A major challenge in 

this method is the selection of an appropriate threshold. This 

study adopts the mean excess function to select appropriate 

thresholds for the respective tails.  

By assessing empirical excess distribution functions with 

associated theoretical distributions, we find the goodness of 

fit in tail modelling. Extreme tail risk measures are estimated 

at significantly high confidence levels such as 99.5%, 99% 

and 99.9%. 

The EVT-based Value-at-Risk approach adopted in this 

study provides quantitative information for analysing the 

extent of potential extreme risks in oil markets, particularly 

based on two crude oil markets. Generally the WTI 

benchmark yields higher risk measures than the Brent. This 

leads to the conclusion that the WTI faces an increased 

exposure to price risk as compared to the Brent. 

For an oil market investor, country or firm, the risk 

measure values would be a great source of information for 

hedging purposes, planning purposes and taxation regulations 

by governments. 

Due to the dynamic nature of the oil markets, time varying 

shape and scale parameters can be considered for further 

studies. In addition, further methods of threshold selection 

can be considered. 

Abbreviations 

OPEC: Organization of Petroleum Exporting Countries 

POT: Peaks over Threshold 

VaR: Value at Risk 

ES: Expected Shortfall 

ARCH: Autoregressive Conditional Heteroscedasticity 
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GARCH: Generalized Autoregressive Conditional 

Heteroscedasticity 

i.i.d: Independent and identically distributed 

EVT: Extreme Value Theory 

WTI: West Texas Intermediate 

ADF: Augmented Dickey-Fuller 
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