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Abstract: Principal Component Analysis (PCA) and Factor Analysis (FA) are common multivariate techniques used for 

dimensionality reduction. With these techniques it is expected to identify actual number of dimensions while accounting 

almost all observed variability. Standard PCA is based either on correlation matrix (CORM) or covariance matrix (COVM). 

When it is based on CORM, scale dependency can be removed but inherent variability cannot be preserved. On the other hand, 

when PCA is based on COVM, inherent variability can be preserved but scale dependency cannot be removed. As a solution to 

this issue, this paper suggests scaling each indicator by its mean, resulting in new mean equal to 1 and standard deviation equal 

to the coefficient of variance (CV). This leads to PCs, which are scale independent while retaining the observed variability. 

The computation of PCs and factors under the suggested method is derived in the study. The procedure is illustrated using the 

lowest level administrative division census data of Western province of Sri Lanka. 
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1. Introduction 

Principal component analysis (PCA) and factor analysis 

(FA) are common multivariate techniques used for 

dimensionality reduction for many purposes. Multivariate 

techniques have been used in many divergent fields in the 

construction of composite indices [1]. In constructing CIs, it 

is important to identify a small number of transformed 

indicators out of the considered set of indicators. One of the 

most important applications of PCA and FA is construction 

of composite indices. 

1.1. Principal Component Analysis (PCA) 

PCA involves a mathematical procedure that transforms a 

set of correlated variables into a smaller set of uncorrelated 

variables. Its goal is to extract the important information 

from the data table and to express this information as a set of 

new orthogonal variables called principal components (PCs) 

[10]. These principal components are linear combinations of 

the original variables. Hence the results of PCA depend on 

the scales that the variables are measured on.  

1.2. Factor Analysis (FA) 

Factor analysis is also a variable reduction technique and 

is similar to PCA. It is a useful tool for investigating variable 

relationships for complex concepts such as socio-economic 

status, dietary patterns, or psychological scales [11]. It allows 

researchers to investigate concepts that are not easily 

measured directly by collapsing a large number of variables 

into a few interpretable, uncorrelated underlying factors. In 

factor analysis, a factor is a latent (unmeasured) variable that 

expresses itself through its relationship with other measured 

variables. Contrary to the PCA, the FA model assumes that 

the data is based on the underlying factors of the model, and 

that the data variance can be decomposed into that accounted 
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for by common and unique factors [12]. Performing FA 

based on PCA is one of a commonly used methods. 

1.3. Composite Index (CI) 

CI measures multi-dimensional aspects which cannot be 

captured properly by a single variable. CI should be based on 

a theoretical framework or definition, which allows 

individual indicators or variables to be selected, combined 

and weighted in a manner which reflects the dimensions or 

structure of the phenomena being measured [2]. With CIs 

decision makers should be able to have a better 

understanding of complex, multi-dimensional realities as it is 

easier to interpret than a set of separate indicators. The most 

important fact of CI is, it’s ability of reducing the visible size 

of a set of indicators without dropping the base of underlying 

information. Farrugia [7] pointed out that in the context of 

policy analysis, CIs are useful in identifying trends and 

drawing attention to particular issues and they can also be 

helpful in setting policy priorities and in benchmarking or 

monitoring performance. However, if the CI is constructed in 

a manner which does not reflect the real situation and the 

construction process lacks proper statistical or conceptual 

principles, those CIs may indicate misleading information for 

policy decisions. Therefore more attention should be paid on 

constructing CIs.  

1.4. Issues 

PCA is performed on a relationship (or association) 

matrix, which captures the interrelationships between 

variables. Mainly correlation matrix (CORM) or covariance 

matrix (COVM) is used as the relationship matrix. But 

depending on the considered matrix, results of the PCA 

differ. Jolliffe [3] says that when performing a PCA, a major 

argument for using CORM rather than COVM is that the 

results of analyses for different sets of random variables are 

more directly comparable. Because PCA based on COVM is 

sensitive to the units of measurement used for each variable. 

Therefore in CORM approach, PCA operates on standardized 

data, scaled by their standard deviation. Then all the 

variables become scale less with zero means and unit 

variances. On the other hand Jolliffe [3] argues that if there 

are large differences between the variances among the 

variables, then those variables whose variances are largest 

will tend to dominate the first few PCs. In that situation, 

those inherent variability cannot be captured performing 

PCA with standardized data. Then drawing conclusions about 

the dominance of variation for the actual, unstandardized 

data tends to be misleading. Hence, COVM approach may be 

entirely appropriate for the set of variables with different 

variances but measured in the same scale. Another 

disadvantage of PC’s derived using the CORM is that they 

give coefficients for standardized variables and are therefore 

less easy to interpret directly [3]. Therefore this problem has 

to be addressed in constructing scale independent composite 

indices, while preserving the inherent variability of the 

variables 

1.5. Objective 

The objective of this study is to find out a solution to the 

problem of scale dependency of performing PCA without 

standardizing the variables while preserving the information 

with respect to inherent variability of the variables. 

2. Proposed Method 

As a solution to the issues mentioned in section 1, data of 

each variable were scaled by its mean. Then the new mean 

will be equal to 1 and standard deviation equal to the CV. 

Consequently scale independent new set of variables can be 

obtained preserving inherent variability.  

Suppose the original variables are X1 X2, …, Xm with means 

and variances equal to �� and ���. where i=1, 2, …, m. 

Let’s divide the each variable by their means and 

symbolized the transformed new set of variables as Yi. Then, 

�� = ��	�                                        (1) 

Here, Yi s are independent of the scale.  


(��) = 
 
��	�� = �(��)	� 	= 	�	� = 1                    (2) 

�(��) = � 
��	�� = �(��)	�� = ���	�� = 
��	��� =	����          (3) 

Then, the standard deviation of Yi = CVi 

Unlike the standardized variables, there are different 

values for the variances of Yi. 

The matrix, X 

� = ���� ��� ⋯ ������ ��� ⋯ ���⋮��� ⋮��� ⋱ ⋮… ���!�×� 

and 

�# = ��̅� 0 ⋯ 00 �̅� ⋯ 0⋮0 ⋮0 ⋱ ⋮… �̅�!�×� 

Where, n = number of observations 

m = number of variables 

Then the matrix after the transformation, � = ��#&�                                      (4) 
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The covariance between two transformed variables, Yi and 

Yj is given by, �-./�� , �12 = 
/���12 − 
(��)
/�12	 
= 
 4���� × �1�15 − 1 × 1	 
= 1���1 
/���12 − 1	 

= 1���1 6
/���12 − ���17 
�-./�� , �12 = 89:/��,�;2	�	;                           (5) 

If Pearson Correlation Coefficient of Xi and Xj is ρij; which 

is equal to  

	<�1 = �-./�� , �12=������  

�-./�� , �12 = <�1=������ = <�1���1 	               (6) 

from (5),  

�-./�� , �12 = �-./�� , �12���1  

Substituting (6) to this equation, we obtain 

�-./�� , �12 = <�1���1���1  

�-./�� , �12 = <� >����? 4�1�15 

�-./�� , �12 = <�1�����1                            (7) 

Then the Variance-Covariance matrix of Y ), ituting  

∑ = '((
) ���� <�������� ⋯ <��������<�������� ���� ⋯ <��������⋮<�������� ⋮<�������� ⋱ ⋮… ���� *++

,
�×�

 (8) 

FA was performed followed by the PCA using the 

variance-covariance matrix (8).  

 

 

 

 

3. Validation 

In order to validate the proposed method, analysis was 

performed using a dataset relevant to the problem. To achieve 

this task, set of variables had to be identified with different 

scales and different variances.  

3.1. Data 

In Sri Lanka, urban / rural classification is not based on a 

proper statistical methodology. Urban areas are defined on 

the basis of administrative boundaries of local authorities 

(LAs). There are three types of Local Authorities in the 

country at present, namely Municipal Council (MC), Urban 

Council (UC) and Pradeshiya Sabha (PS). MCs and UCs are 

considered urban LAs while PSs are considered rural LAs. It 

could be seen that some areas with urban characteristics were 

in PS divisions while some rural categories were in MC and 

UCs. Because, variability of those attributes are significant 

within a LA. Therefore, we need to go to the lowest 

administrative level in a LA for the classification. Then, the 

variability of the considered variables within the LAs could 

be taken into account. In the Sri Lankan context, being the 

smallest administrative unit, Grama Niladhari (GN) division 

is the most appropriate level to be considered.  

3.2. Variables 

Considering the following variables, data were collected by 

GN divisions in the Western province of Sri Lanka. All the 

variables were adjusted in a manner which explaining the high 

degree of urban nature. Number of data points was 2495. Data 

were obtained from the Department of Census and Statistics in 

Sri Lanka. The description of the variables are as follows.  

Pop_Dencty: Population Density 

stories3_HU_Pcnt: Percentage of three and above storied 

housing unites out of total housing units in the GN division 

HU_Bld_pcnt_INVS: 100 - Percentage of housing units 

out of total buildings in the GN division 

In_Migration: Percentage of in-migrated population  

WS_Rtail_HH: Number of wholesale and retail outlets per 

housing unit in a GN division 

Edu_HH: Number of education centers (Private) per 

housing unit in a GN division 

Health_HH: Number of medical centers (Private) per 

housing unit in a GN division 

Recreation_HH: Number of recreation centers per housing 

unit in a GN division 

IND_Above_5: Number of industries with 5 and above 

number of employees in a GN division 

4. Results 

All the considered variables were in different scales. The 

appropriateness of them for this study was identified using 

descriptive statistics.  
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4.1. Descriptive Statistics 

Descriptive statistics of the considered variables are given in the table 1 to identify the nature of variability.  

Table 1. Descriptive statistics of the considered variables. 

Variable Scale Mean Standard Deviation CV 

Pop_Dencty No. of people per Km2 3128.432 4580.556 1.464 

stories3_HU_Pcnt % 0.543 1.219 2.245 

HU_Bld_pcnt_INVS % 21.038 9.247 0.440 

In_Migration % 7.320 7.731 1.056 

WS_Rtail_HH Per Housing unit 0.076 0.135 1.768 

Edu_HH Per Housing unit 0.010 0.012 1.205 

Health_HH Per Housing unit 0.003 0.007 2.141 

Recreation_HH Per Housing unit 0.003 0.009 3.640 

IND_Above_5 Number 9.691 24.178 2.495 

 

Table 1, clearly indicates that the considered set of 

variables were in different scales. Also they were with 

highly dispersed variability. That was not only due to 

magnitude of the numbers but also due to inherent property 

of the variable. Therefore, that nature could be captured 

using the CV included in the fifth coloumn in table 1. As an 

example the highest standard deviation was recorded from 

the variable “Pop-Dencty” (Population density), which is 

4580.556 number of people per Km
2
. But it’s CV was not 

the highest. The variable, “Recreation_HH” (Number of 

recreation centers per housing unit in a GN division) 

recorded the highest CV of 3.640. But the standard 

deviation of it was very low. (0.009 per housing unit). 

Hence, the set of variables given in table 1 was suitable to 

validate the proposed method.  

 

4.2. Application of PCA 

PCA was performed to identify the minimum linear 

combination of considered variables with higher explanation 

of the original variation of the data. Proposed method was 

applied followed by the conventional approaches, those are 

with the relationship matrices of CORM and COVM. In 

CORM approach, data were standardized whereas in COVM 

approach, they were not. Variables under the proposed 

method were transformed by dividing by their means. Then 

scale dependency problem was solved and the inherent 

variability of the variables was also taken into account. Then 

the variances of the new set of variables are the square term 

of CV of the original variables. Using COVM, PCA was 

performed to the transformed data set under the proposed 

method and the results were included in table 2.  

Table 2. Eigen values under conventional and proposed methods. 

PC No. 

Conventional method  
Proposed method  

CORM approach COVM approach 

Eigen value Cumulative % of variance  Eigen value Cumulative % of variance Eigen value Cumulative % of variance 

1 3.980 44.260 20981550.512 99.997 14.650 49.930 

2 1.960 66.020 567.619 100.000 7.570 75.710 

3 0.800 74.900 67.319 100.000 2.600 84.570 

4 0.560 81.110 42.162 100.000 1.580 89.960 

5 0.540 87.120 0.628 100.000 1.090 93.680 

6 0.390 91.480 0.012 100.000 0.790 96.370 

7 0.320 95.060 0.000 100.000 0.510 98.120 

8 0.290 98.300 0.000 100.000 0.470 99.700 

9 0.150 100.000 0.000 100.000 0.090 100.000 

 

4.2.1. Conventional Method 

Considering the results of PCA, first two PCs those eigen 

values are above 1, explained only 66 percent of total 

variation. This is not supposed to be a good approach due to 

two reasons. One of these was requirement of selecting 

higher number of PCs to get reasonably higher degree of 

explanation out of total variation though the objective is to 

reduce variable at minimum level while explaining the 

greater degree of variability. The other reason was neglecting 

the inherent variability due to standardizing variables. 

Therefore, the possible alternative was to perform PCA using 

covariance matrix approach with unstandardized data. But 

here, whole variability was dominated by one PC due to the 

variable having the highest variance (Table 1). However this 

approach cannot be applied since the set of variables was in 

different scales. 

4.2.2. Proposed Method 

Under the proposed method, 75.71 percent of total 

variance was explained by the first two PCs while in the 

conventional method with CORM approach, it was 66.02 

percent. This is more than 9 percent of improvement which 

can be considered as sufficient.  
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4.3. Application of FA 

FA was performed using the method of principal component. Therefore two factors were considered under CORM approach 

in conventional method and proposed method. Due to dominance of one PC under the COVM approach, only one factor could 

be considered. 

Table 3. Under the factor analysis contribution of variables for first two factors for each method. 

Variable 

Conventional method 
Proposed method 

CORM approach COVM approach 

Factor 1 Factor 2 Factor 1 Factor 1 Factor 2 

Pop_Dencty -0.115 0.706* 1.000* -0.051 0.583* 

stories3_HU_Pcnt 0.155 0.868* 0.564 0.141 0.882* 

HU_Bld_pcnt_INVS 0.711* 0.378 0.101 0.588* 0.363 

In_Migration 0.139 0.685* 0.251 0.148 0.546* 

WS_Rtail_HH 0.882* 0.099 0.052 0.927* 0.087 

Edu_HH 0.816* 0.038 0.003 0.723* 0.066 

Health_HH 0.834* 0.058 -0.015 0.771* 0.109 

Recreation_HH 0.852* 0.098 0.021 0.963* 0.101 

IND_Above_5 0.264 0.744* 0.288 0.242 0.858* 

* Significant contribution 

In factor analysis, for both methods (except COVM 

approach) few variables indicated significant contribution on 

two factors which should not to be. Therefore Varimax 

rotation was used to overcome that issue. In the proposed 

method and the CORM approach under conventional method, 

all the variables could be adequately explained by two 

factors. Since the large variance of the variable Pop_dencty, 

in COVM approach, only that variable indicated highly 

significant contribution to the identified single factor.  

In PCA, with the application of the proposed method, there 

was a significant improvement over the conventional method. 

Considering the FA, in the proposed method, contribution of 

the variables on factors was not dominated by few variables 

as COVM approach under conventional method. 

5. Conclusions 

Conducting PCA and FA as a variable reduction 

techniques, with CORM approach is not always acceptable 

due to ignoring the inherent variability of variables. COVM 

approach is a good solution to the above problem, but it also 

has the drawback of scale dependency. To get scale 

independent set of indicators, all the indicators were 

converted in to new set dividing the data of original 

indicators by their means. The means of the new set of 

variables were unit, while the standard deviations were CVs. 

Hence the inherent variability of the original indicators were 

preserved under the proposed method. Therefore, in the 

application of PCA and FA, converting new set of indicators 

scaling by their means can generate meaningful information. 
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