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Abstract: In this article, we show that the well-known Helmert matrix has strong relationship with stochastic matrices in 

modern probability theory. In fact, we show that we can construct some stochastic matrices by the Helmert matrix. Hence, we 

introduce a new class of regular and doubly stochastic matrices by use of the Helmert matrix and a special diagonal matrix that 

is defined in this article. Afterwards, we obtain the stationary distribution for this new class of stochastic matrices.  
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1. Introduction 

In modern probability theory and dynamical systems, 

stochastic processes and Markov chains are applied contexts 

that are used in advanced sciences. Two basic topics in 

stochastic process are prediction and filtering. In the topic of 

prediction for Markov chains, we can obtain the � -step 

transition probability, using the 1-step transition probability. 

This work is done by a matrix which is called the stochastic 

or probability or transition or Markov matrix. In stochastic 

processes or Markov chains, stochastic matrices are used for 

showing the transition probabilities [9, 11]. On the other 

hand, there is a special matrix in liner algebra that is called 

the Helmert matrix. A Helmert matrix of order � is a square 

matrix that was introduced by H. O. Lancaster in 1965 [4]. 

Usually, the Helmert matrix is used in mathematical statistics 

for analysis of variance (ANOVA), see [1, 2, 8]. In this 

article, we will show that the Helmert matrix can be used in 

stochastic processes. For the next sections, the following 

notation will be used:  

(a) �� denotes an identity matrix of order �.  

(b) �� denotes an � × � matrix whose elements are all 1.  

(c) ���	 denotes the inverse of a matrix ��.  

(d) ��
 denotes the transpose of a matrix ��.  

(e) ��
��
		 
�� … 
���  denotes an � × � 

diagonal matrix with diagonal entries 
		, 
��, … , 
��. 

(f) �� > 0 stands for a matrix ��  all of whose elements 

are positive.  

(g) ℝ denotes real numbers. 

2. Definitions and Particulars 

2.1. Stochastic Matrix 

Suppose that a stochastic process start from state �	 to 

state 	� . This transition shown by � → � , and ���  denote its 

probability. Now, if process consist of � states and �� denotes 

the state at time � , then the transition � → �	  at time � , is 

indicated by �� = �	and	��$	 = �. Furthermore, a process is 

called a Markov chain if the transition probability ���  is 

independent of time � for every states � and �of state space. 

Hence, the transition probability under the Markov property, 

is defined as: ��� = %&'��$	 = �|�� = �, ���	 = ���	, … , �	 = �	) = %&'��$	 = �|�� = �)		                      (1) 

for every �	, ��, … , ���	, �, �  of state space. Thus, we can 

construct a � × �  stochastic (transition) matrix by the 	��� , 1 ≤ �, � ≤ �: 

Definition 1. [9] A � × �  real matrix such as 	%� =,���-�×�  is called a stochastic matrix (or row stochastic 

matrix), if 

1) ��� ≥ 0, 1 ≤ �, � ≤ � 
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2) ∑ ��� = 1, ∀� ∈ '1, 2, … , �)��3	  

Definition 2. [5] A doubly stochastic matrix, is a square 

matrix of nonnegative real numbers with each row and 

column summing to 1(in other words, a stochastic matrix is 

doubly, if its transpose is stochastic matrix). 

Hence, If ,���-�×� be the 1-step transition matrix, then the 

matrix ,���456-�×� is called the �-step transition matrix (under 

the conditions of Definition 1). Chapman and Kolmogorov 

independently showed that if % is a 1-step transition matrix, 

then �-step transition matrix denoted by %456	 and is equal to %456 = %5 = % × % × …× %78889888:5	��;<= 	                        (2) 

Or in other words, if ℓ be the state space of a Markov 

chain, then  ���456 = %&'��$5 = �|�� = �) = ∑ ��?4@6�?�45�@6?∈ℓ   (3) 

where 0 < & < � . For more details about the Chapman-

Kolmogorov equation, see [9, 10, 11]. 

2.2. Regular and Ergodic Markov Chains and Stationary 

Distribution 

A nonnegative square matrix % is called regular if 	%; > 0 

for some m [6]. Since every transition matrix is nonnegative, 

hence we have a similar definition for Markov chains. 

Definition 3. [7] A Markov chain is called a regular chain 

if some powers of the transition matrix has only positive 

elements (in other words, the transition matrix of chain be 

regular). 

Regularity is an important property for Markov chains 

since it has a strong relationship with another important 

ergodicity property. We know that a Markov chain is ergodic 

if it is possible to go from every state to every state (not 

necessarily in one move). By [3, Theorem 1.8] we know that 

if a Markov transition matrix % is regular, then it has exactly 

one ergodic class and in general this process is ergodic. 

Hence, the following proposition shows the relationship 

between the regularity property and ergodicity one: 

Proposition 1. [3, 6] Every regular Markov chain is 

ergodic.  

Ergodic Markov chains are very important because there is 

a unique stationary distribution vector for their states. To 

compute the stationary distribution of an ergodic Markov 

chain, we have:  

Proposition 2. [9] Let ���456  be the � -step transition 

probability from state �  to state�and lim5→∞
���456  exists. If E� 

denotes the stationary distribution and chain be ergodic, then E� = lim5→∞
���456. 

Since every regular chain is ergodic, if chain be regular, 

then stationary distribution exists. 

2.3. The Helmert Matrix 

The Helmert matrix is a square matrix of order � that is 

defined as: 

F� =
GHH
HHH
I 	√�⋮	L�4��	6⋮	L�4��	6

	√�⋮	L�4��	6⋮	L�4��	6
	…	

	√�⋮	L�4��	6⋮	L�4��	6

	√�⋮�4��	6L�4��	6⋮	L�4��	6

	√�⋮		0	⋮	L�4��	6
…

	√�⋮	0⋮�4��	6L�4��	6MNN
NNN
O

�×�
  (4) 

Also see [2, page 67].  

Moreover, the first row of the Helmert matrix of order �, 

has the following form 

P 	√� 	√� 	√� … 	√�Q78888889888888:�		��<;=
                         (5) 

And the other �-th rows (2 ≤ � ≤ � ) are formed by 

R 	L4��	6� 	L4��	6� … 	L4��	6�788888888988888888:��			��<;=
	 	 �4��	6L4��	6�	 0 … 0788988:���		��<;= S    (6) 

Furthermore, we know that the Helmert matrix is 

orthogonal [1]:  F�F�
 = F�
F� = ��                         (7) 

To prove the main theorems in the next section, we need 

the following proposition: 

Proposition 3. Let F�  be the Helmert matrix of order 	� 

and	�� = ��
��T + �V T T … T� with T, V ∈ ℝ.Then  F�
��F�	 = 	T�� + V��                       (8) 

Proof. By calculation we have  

F�
 × �� = T × F�
 +
GHH
HHH
I�W√� 0 … 0�W√� 0 … 0⋮ 	⋮	 ⋱ ⋮�W√� 0 … 0	 MNN

NNN
O

�×�
        (9) 

Besides, by calculation, we have  

V × �� × F�
 =
GHH
HHH
I�W√� 0 … 0�W√� 0 … 0⋮ 	⋮	 ⋱	 ⋮	�W√� 0 … 0	 MNN

NNN
O

�×�
           (10) 

Hence, using (10) in (9), we obtain  F�
 × �� = T × F�
 + V × �� × F�
             (11) 

Right multiplying of both sides of (11) by F�, we obtain F�
 × �� × F� = T × �� + V × ��  

The theorem is proved.  
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3. Main Results 

3.1. A New Class of Regular Doubly Stochastic Matrices 

Using the Helmert Matrix 

Let us consider the matrix  %� = F�
��F�                         (12) 

where F�  is the Helmert matrix of order �  and �� =��
� P1 YY$�Z YY$�Z … YY$�ZQ with 
, [ ≥ 0. Clearly, the 

matrix %�  is a diagonalizable matrix (note that in matrix 

theory, we know that if a square matrix of order � such as �� 

can be equal to \�
��\�  where \�  is a orthogonal matrix 

and ��  is a diagonal matrix, then ��  is called a 

diagonalizable matrix (see [12])). 

Now, we shall prove that %� is a doubly stochastic matrix. 

We need the following lemma. 

Lemma 2. Let F�  be the Helmert matrix of order � and 
, [ ≥ 0 such that at least 
	or [ is positive. Then  

F�
��F�	 =	 	Y$�Z 4
�� + [��6                      (13) 

where �� = ��
� P1 YY$�Z YY$�Z … YY$�ZQ. 
Proof. Using Proposition 3 with T = YY$�Z and V = ZY$�Z , 

the lemma is proved. 

Theorem 1. Let �� = ��
� P1 YY$�Z YY$�Z … YY$�ZQ 
for 
, [ ≥ 0  (at least 
  or [  is positive) and F�  be the 

Helmert matrix of order �. Then %� = F�
��F� is a doubly 

stochastic matrix. 

Proof. By Lemma 2, we know that %� = F�
��F� =	Y$�Z 4
�� + [��6. So, we have  

%� = 1
 + �[]
_̂
 `1 ⋯ 0⋮ ⋱ ⋮0 ⋯ 1b�×�

cddddeddddfgh
+ [ `1 ⋯ 1⋮ ⋱ ⋮1 ⋯ 1b�×�

cddddeddddfih

j
kl 

=
GHH
HHI
Y$ZY$�Z ZY$�Z … ZY$�ZZY$�Z Y$ZY$�Z … ZY$�Z⋮ZY$�Z ⋮ZY$�Z ⋱… ⋮Y$ZY$�ZMNN

NNO
�×�

              (14) 

Clearly, all elements of the above matrix are positive. 

Now, we shall prove that each row of (14) sum to 1. Hence, 

we have  

For the 1-th row: 	 
+[
+�[ + [
+�[ + [
+�[ + ⋯+ [
+�[78888889888888:�−1	��nop
= 
+�[
+�[ = 1 

For the 2-th row: 	 [
+�[ + 
+[
+�[ + [
+�[ + ⋯+ [
+�[78889888:�−2	��nop
= 
+�[
+�[ = 1 

⋮  
For the i-th row: 

ZY$�Z + ZY$�Z +⋯+ ZY$�Z78888889888888:��		��<;=
+ Y$ZY$�Z +

ZY$�Z + ZY$�Z +⋯+ ZY$�Z78888889888888:�����<;=
= 4� − 16 ZY$�Z + Y$ZY$�Z = Y$�ZY$�Z = 1  

⋮  
For the n-th row: 	 ZY$�Z + ZY$�Z +⋯+ ZY$�Z7888888898888888:��		��<;= + Y$ZY$�Z = Y$�ZY$�Z = 1 

So, both conditions of Definition 1 are holds for the matrix %� = F�
��F�, hence this matrix is a stochastic matrix. 

On the other hand, we know that the matrix 	%�	 is a 

symmetric matrix, because 

%�
 = qF�
��F�r
 = F�
��F� = %�          (15) 

Thus, by Definition 2, it is a doubly stochastic matrix. 

Corollary 1. Let '��: � ≥ 0) be the finite Markov chain by 

stochastic matrix %�  in Theorem 1. Then the transition 

probability for transition � → � is equal to 

��� = %&'��$	 = �|�� = �) = t Y$ZY$�ZZY$�Z
						� = �						� ≠ �          (16) 

Proof. We know that ���  is the 4�, �6 -th element of 

stochastic matrix %�. Therefore the proof is immediately.  

Suppose that a square � × � doubly stochastic matrix such 

as v� has the following form 

v� = wx		 x	� … x	�x�	 x�� … x��⋮x�	 ⋮x�� ⋱… ⋮x��y�×� = R
p � … �� p … �⋮� ⋮� ⋱… ⋮pS�×�

 (17) 

Clearly, since 	x�� = p  and x�� = �  ( for	� ≠ � ), then the 

matrix 	v� is follow of new class, if p ≥ � and the following 

system of equations hold: 

tp = Y$ZY$�Z� = ZY$�Z 	⟹ 
, [ ≥ 0	and	at	least	
	or	[	is	positive  (18) 

Hence we can write v� = 	Y$�Z 4
�� + [��6.  
Example 1. Consider the matrix 	v� = GHH

HI�� �� ���� �� ���� �� ��MNN
NO
�×�

. We 

can show that 	v� is a doubly stochastic matrix and follow of 

the new class. Since if it is considered = �� , � = �� and � = 3, 

then by (18) we have 

t�� = Y$ZY$�Z�� = ZY$�Z 	⟹ 
 = 1, [ = 2  

Since both 
 = 1 and [ = 2 are positive, so, by (18) the 

matrix 	v� is follow of the new class.  
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Now, consider the following another example. 

Example 2. Let v� = R�� ���� ��S�×� . Clearly, v�  is a doubly 

stochastic matrix. But v� is not follow of new class, because 

if p = �� and � = ��, then we know that p < �, and this is in 

contradiction with (17) and (18). 

Corollary 2. Let 	v�	 is a doubly stochastic matrix such 

that it is hold under the (18). Then v� is diagonalizable and v� = F�
��F�  where F�  is the Helmert matrix of order � 

and �� = ��
� P1 YY$�Z YY$�Z … YY$�ZQ.  
Proof. By Corollary 1 if (18) holds for the matrix v�, then v� is follow of the new class and v� = 	Y$�Z 4
�� + [��6. On 

the other hand, by Lemma 2, we know that the matrix v� = 	Y$�Z 4
�� + [��6  is diagonalizable and we can write 	v� = 	Y$�Z 4
�� + [��6 = F�
��F�  where F�  is the 

Helmert matrix of order �  and ��  is the same diagonal 

matrix in Lemma 2.  

When a matrix is diagonalizable, we can obtain its positive 

integer powers by its diagonal form. On the other hand, by 

Chapman-Kolmogorov equation [9, 10, 11], we know that the �-step transition matrix is equal to the � -th power of 1-step 

transition matrix. Hence, for the stochastic matrix v�  in 

Corollary 2, we have v�5 = F�
��5F�                          (19) 

In the next part, we will use of (19) to compute the 

stationary distribution of the new class of stochastic matrices.  

3.2. Stationary Distribution for the New Class of Regular 

Stochastic Matrices  

We know that the Markov chain by stochastic matrix in the 

Theorem 1, is a regular and ergodic chain, since all elements 

in this matrix are positive and hence is possible to go from 

every state to every state. Now, in the next theorem we 

compute the stationary distribution for this chain. 

Lemma 3. Let F�  be the Helmert matrix of order � and �� = ��
��1 0 0 … 0�. Then F�
��F� = 	� ��. 

Proof. The lemma is proved by Lemma 2 with 
 = 0.  

Theorem 2. The Markov chain by the stochastic matrix in 

Theorem 1 is a regular and ergodic chain, and if E� (j=1,2,…,n) denotes the stationary distribution of this 

chain, then E� = 	�. 

Proof. By Theorem 1 we know that all elements of 

stochastic matrix %�  are positive. So, the chain is regular. 

Besides, by Proposition 1, the chain must be ergodic. By 

Proposition 2, we know that if chain is ergodic and lim5→∞ ���456 exists, then E� = lim5→∞ ���456. So, we have  

Lim5→� %�5 = lim5→�qF�
��F�r5             (20) 

We know that �� = ��
� P1 YY$�Z YY$�Z … YY$�ZQ . 

Using (19), we have  

lim5→�
]
_̂F�
 × GHH

HI1 		 YY$�Z �
� ⋱ 		 YY$�ZMNN

NO
�×�

× F�
j
kl
5
  

= lim5→�F�
 ×
GH
HH
I1 		 � YY$�Z�5 �

� ⋱ 		 � YY$�Z�5MN
NN
O
�×�

× F�   

= F�
 ×
GHH
HHI
1 		 lim5→� � YY$�Z�5 �

� ⋱ 		 lim5→� � YY$�Z�5MNN
NNO
�×�

× F�  

= F�
 × R1 00 0 … 0… 0⋮ ⋮0 0 ⋱ ⋮… 0S�×� × F�               (21) 

And by Lemma 3, we have 

F�
 × R1 00 0 … 0… 0⋮ ⋮0 0 ⋱ ⋮… 0S�×� × F� =
	� ��          (22) 

Therefore E� = 	�. 

4. Conclusion 

Usually, we can working on many topics of probability 

theory, but working on stochastic processes and offering new 

Markov chains are less than other subjects. In this article we 

presented a new class of stochastic matrices. Since for every 

integer � and every positive real numbers such as 
 and [, 

we can construct a stochastic matrix of order � by forming to %� = 	Y$�Z 4
�� + [��6, so the new class is very big. Also, we 

showed that %� = F�
��F�  where F�  is the well-known 

Helmert matrix and �� is a diagonal matrix of order �. So, 

the stochastic matrix %� is a diagonalizable matrix. In matrix 

theory, diagonalizable form of a square matrix is very 

important, because compute of determinant and also integer 

powers of matrix by this form is simpler than other usual 

methods. On the other hand, we know that integer powers of 

a stochastic matrix is important for prediction of its behavior. 

In addition, we showed that the Markov chain by the 

stochastic matrix %�  is regular and ergodic. Regular and 

ergodic properties are two important properties of stochastic 

processes, because the stationary distribution for any regular 

or ergodic Markov chain is equal to the limit of �-th power of 

its transition matrix as � → ∞. Furthermore, we proved that 

the stochastic matrix %� is a doubly stochastic matrix.  
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Appendix: Doubly Stochastic Matrices 

that Their Inverses are Doubly 

Stochastic Matrices 

We know that �� is a doubly stochastic matrix, since each 

row and column of ��  sum to 1. Besides, ���	 = �� , which 

means that there is at least a doubly stochastic matrix of 

order � such that its inverse is a doubly stochastic matrix. In 

2015, R. Farhadian (the first author) by a Farsi language 

article titled “Approximation for stationary distribution of 

ergodic stochastic processes” published in “NEDA: Student 

Statistical Journal”, showed that there exists some doubly 

stochastic matrices except identity matrix, such that their 

inverses are doubly stochastic matrices. Consider the 

following matrices of order 2 and 3:  

�� = R 	√� 	√�	√� �	√�S
cdedfF2�

× P1 00 −1Q × R
	√� 	√�	√� �	√�S
cdedfF2

78888888889888888888:��
���
���n�	��&o
= P0 11 0Q  

and  

�� = GHH
HI 	√� 	√� 	√�	√� �	√� 	√�	√� 0 ��√�MNN

NOcdddedddfF3�

× `1 0 00 −1 00 0 1b × GHH
HI 	√� 	√� 	√�	√� �	√� 0	√� 	√� ��√�MNN

NOcdddedddfF3

7888888888888898888888888888:��
���
���n�	��&o

  

= `0 1 01 0 00 0 1b  
where F� and F� are orthogonal Helmert matrices of order 2 

and order 3, respectively. 

We know that for a diagonalizable square matrix such as �� = \�
��\� , the inverse of ��  is equal to �� =\�
���	\�. Thus for inverses of �� and ��, we have 

���	 = R 	√� 	√�	√� �	√�S 	× �416
�	 00 4−16�	� × R

	√� 	√�	√� �	√�S = P0 11 0Q  
and  

���	 = GHH
HI 	√� 	√� 	√�	√� �	√� 	√�	√� 0 ��√�MNN

NO × R416�	 0 00 4−16�	 00 0 416�	S ×

GHH
HI 	√� 	√� 	√�	√� �	√� 0	√� 	√� ��√�MNN

NO = `0 1 01 0 00 0 1b  
Clearly, ��  and ��  are doubly stochastic matrices and ���	 = �� and ���	 = �� are doubly stochastic matrices.  
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