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Abstract: The purpose of this study was to assess the spatial distribution of malaria prevalence rates among selected rural part 
of woredas in SNNPR, Ethiopia. This work is based on data available from the 2011 malaria indicator survey (MIS 2011) of 
Ethiopian Public Health Institution. ESDA, Spatial regression model and Bayesian Spatial analysis were employed for data 
analysis. From ESDA, we found positive spatial autocorrelation in malaria prevalence rate. Relying on specification diagnostics 
and measures of fit; Spatial lag model was found to be the best model for modeling malaria prevalence rate data. The relationship 
between malaria prevalence and its risk factors was assessed using spatial models. The spatial models also showed an increase of 
malaria prevalence with a number of factors. From results, increase in the proportion of households sprayed in 12 months and the 
average altitude in the woreda estimated to decrease the average malaria prevalence. The result also demonstrated that increase in 
the House hold size of the district, proportion of households having access to piped water, proportion of households having 
access to radio, proportion of households having access to radio and Main construction material of the room’s wall are estimated 
to raise the average malaria prevalence rate. Finally, the study concluded that malaria is spatially clustered in space and the risk 
factors exhibit effect on the malaria prevalence in the study area. Based on the results of the study, We recommend for policy 
makers on the way to reduce malaria prevalence in the rural part of woreda of SNNPR using spatial information. 
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1. Introduction 

1.1. Background of the Study 

Malaria is a mosquito-borne infectious disease of humans 
and other animals caused by protists of the genus Plasmodium 
which are introduced into the circulatory system by the bite 
from an infected female anopheles mosquito. In the human 
body, the parasites multiply in the liver, and then infect red 
blood cells. Malaria risk becomes higher in rural areas of 
developing countries [12]. A large number of malaria causing 
factors including the proximity to the vector breeding sites, the 
inadequate use of control measures, low income, illiteracy, 
land use and the house material play a big role [41]. He 
mentioned the multiplicity of malaria causing factors in rural 
areas as the main cause of its persistence as they are difficult to 
control at the same time [41]. 

Malaria disease burden and transmission can be assessed 
using incidence or prevalence in human hosts. Malaria is one 
of the leading causes of morbidity and mortality in the world, 
with an estimated 3.3 billion people at risk of malaria [14]. 
The incidence of malaria worldwide is estimated to be 216  
million cases per year, with 81%  of these cases occurring in 
sub-Saharan Africa. Malaria kills approximately 655,000  
people per year; 91%  of deaths occur in sub-Saharan Africa 
[14], mostly in children under five years of age. 

According to records from the Ethiopian Federal Ministry 
of Health, 75%  of the country is malarious with about 60%  
of the total population living in areas at risk of malaria. That is, 
50.6 million people are at risk from malaria, and four to five 
million people are affected by malaria annually. The 
transmission of malaria in Ethiopia depends on altitude 
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1,000-2,000m above sea level, since malaria is rarely 
transmitted at higher elevations (unless there are weather 
abnormalities and widespread epidemics). And rainfall with a 
lag time varying from a few weeks before the beginning of the 
rainy season to more than a month after the end of the rainy 
season (PMI, 2015). 

Malaria is the leading public health concern in the Southern 
Nation Nationalities and People Region (SNNPR) among the 
regional states of Ethiopia. Epidemiological and ecological 
data of the region indicate that more than 65%  of the area of 
this region is malarious. 

1.2. Statement of the Problem 

Malaria cases depend on the Demographic, Environmental, 
seasonal, climatic and others different socioeconomic factors. 
Controlling malaria at regional level needs identifications of 
those factors related to malaria. Malaria is the leading cause of 
morbidity and mortality in Ethiopia, accounting for over five 
million cases and thousands of deaths annually. About 75%  
of the land and 60%  of the population is exposed to malaria 
in Ethiopia. In most part of the country the peak period of the 
malaria incidence occur from September to December 
following the main rainy season (June to September)and from 
March to May during and after the small rainy season 
(February to March) [5]. 

In the Southern Nations, Nationalities and People’s Region 
(SNNPR), Ethiopia about 65%  of the population is living in 
malaria endemic areas. In the region, malaria is the primary 
cause of outpatient and inpatient consultations and hospital 
deaths (SNNPR, 2013). Hence, considering seasonal and 
geographical variations malaria transmission has been 
difficult due to a lack of resource and time as well as usage of 
inappropriate statistical methods and data. Explaining this 
distribution is also important, since it provides a rationale for 
interventions and makes it possible to predict transmission 
intensity in places in which it has not been measured. Spatial 
autocorrelation measures and analyzes the degree of 
dependency among observations in a geographic space. It 
requires measuring a spatial weights matrix that reflects the 
intensity of the geographic relationship between observations 
in a neighborhood, e.g., the distances between neighbors, the 
lengths of shared border, or whether they fall into a specified 
directional class such as west. In this study, the spatial 
distribution of malaria prevalence in selected rural part 
woredas of SNNPR, Ethiopia is explored along with risk 
factors. Spatial variation can be quantified using spatial 
models. Therefore, this study is aimed to address the 
following questions: 

a). What are the major significant factors of malaria 
prevalence rate in rural Southern Nation, Nationalities 
and People of Ethiopia? 

b). How does malaria prevalence rate spatially distributed 
across woredas in rural Southern Nation, Nationalities 
and People of Ethiopia? 

c). Is there any relation ship between Malaria prevalence 
rate and its risk factors? 

1.3. Objectives of the Study 

1.3.1. General Objective 

The general objective of this study was to identify and 
model determinants of Malaria prevalence rate and Its risk 
factors in rural woredas of Southern Nation, Nationalities and 
People’s region, Ethiopia. 

1.3.2. Specific Objectives 

a). To identify the significant factors of malaria prevalence 
rate in rural SNNPR, Ethiopia. 

b). To determine the spatial variations of malaria 
distributions across the districts of rural Southern 
Nation, Nationalities and People’s Region, Ethiopia. 

c). To identify and model the relationship between malaria 
prevalence rate and Its risk factors. 

d). To contribute scientific result as information for policy 
makers and and stake holders. 

1.4. Overview of Study 

This paper is organized as follows. The first chapter 
provides a brief Background of the Study, Statement of the 
problem, Objectives, its Significance and Scope of the study. 
The third chapter describes the Source of data, Variables of the 
study and the Methodology used for analysis. The fourth 
chapter presents Spatial analysis and Bayesian spatial analysis 
of the data and discussion of each outputs. Finally, Conclusion 
and Recommendation of the study are dealt within section five 
of the study. 

2. Data and Methodology 

2.1. Description of Study Area 

The state of Southern Nations, Nationalities and People’s 
region is located in the Southern and South western part of 
Ethiopia. It is bordered with Kenya in south, Sudan in 
southwest, Gambella region in northwest and surrounded by 
Oromia region in northwest, north and east directions. The 
state of Southern Nations, Nationalities and people of Ethiopia 
comprises 10%  of the total area of the country. It is 
administratively divided into 13 zones, 133 woredas. The 
capital city of the region is Hawassa. According to the CSA 
annual report the state has an estimated area of 110,931.9 
sqkm [6]. The total population size of the region is 14,945,992. 
The rural population of the state accounts for 86.2%  of the 
total population with most rural area region in the country 
(SNNPR, BoFED, Annual Statistical Abstract 2008 E. C.). 

2.2. Data Descriptions 

This work is based on data available from the 2011 malaria 
indicator survey (MIS 2011) of Ethiopian Public Health 
Institution. The 2011 EMIS was the second malaria indicator 
survey held in Ethiopia after the 2007 survey. The survey 
included testing for malaria among all age groups using a 
finger or heel-prick blood sample. The aim of the program is 
to undertake national malaria control for regional and national 
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family and health planning. The main goal of the 2011 EMIS 
was to measure the progress toward achieving the goals and 
objectives of the NSP 2007 2015− . 

2.3. Study Variables 

The dependent variable is Malaria prevalence rate of 
selected household in the rural parts of woredas of the region 
where as The independent variables with their corresponding 
meaning of the symbols which are used throughout the whole 
description for this study are given in the following table. 

Table 1. Independent Variables for the Study. 

Mean altitude of a district ASL in meter (Mean ALT) 
Proportion of households having access to piped water (DngWtr_100) 
Proportion of household having Toilet (Toilet_100) 
Proportion of households access to radio (RADIO_100) 
Proportion of households Access to phone ( PhoneML) 
Main construction material of the room’s wall ( WType) 
Main construction material of the room’s roof (RType) 
Main construction material of the room’s Floor (FType) 
Use of mosquito nets (Bed nets) 
Percentage of households sprayed in the last 12 months (SPd12m) 
Average number of household members (AVHHMBR) 
Household size (HHsize) 

N= number of selected woreda 

2.4. Statistical Methods 

Spatial data and Spatial dependence 
In statistics, spatial data analysis or spatial statistics 

includes any of the formal techniques which assess entities 
using their topological, geometric, or geographic properties. 
Spatial data analysis can be defined as statistical study of 
phenomenon that manifests them in space. As a result location, 
area, topology, spatial arrangements, distance and interactions 
became the focus of attention [2]. Spatial data set consists of a 
collection of measurements or observations on one or more 
attributes taken at space [26] or Spatial data contain 
information about both the attribute of interest as well as its 
location. The spatial data structures are geographically 
referenced matrix of uniform size cells from remote sensing 
(Raster) and Vector (features on the earth’s surface that are 
represented as geographically referenced vectors such as 
points, line and polygon). 

There are three types of spatial data:- 
a. Spatial Point Processes:- observes typically complete set 

of data points in the space that exhibits complete spatial 
randomness or occurrence of events at locations in space. 

b. Geostatistical Data:- observes typically complete set of 
data points based on data that can be interpolated to 
unobserved points on continuous surface regularly or 
irregularly in function of distance. 

c. Areal (Lattice) Data:- observes data distributed in to 
predefined spatial regular or irregular shape regions such as 
states, countries, census tracts, Zip codes, etc to see discrete 
variation over space. 

According to [3], Spatial autocorrelation can be loosely 
defined as the coincidence of value similarity with location 
similarity. In other words, high or low values for a random 

variable tend to cluster in space (positive spatial 
autocorrelation) or locations tend to be surrounded by 
neighbors with very dissimilar values(negative spatial 
autocorrelation). 

Contiguity information is quantified as contiguity (spatial 
neighbors) matrix which contains elements of 1 and 0; the 
matrix is denoted by W and defined by: 
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Where; n is the number of regions/locations under study, 

ijW  is the element of W representing a weight for ( , )thi j  

location i, = 1, 2,...,j n . As affirmed by [3] and [31] contiguity 

matrix W is constructed based on the following forms of 
definitions. 

a). A rook contiguity definition considers objects sharing a 
common edge, defines ijW =1  for regions that shares 

common edges with the region of interest otherwise ijW

= 0 . 
b). A bishop contiguity definition considers objects sharing 

a common vertex as neighbours, defines ijW = 1  for 

entities that shares common vertex with the region of 
interest otherwise ijW = 0 . 

c). A queen contiguity definition incorporates both the rook 
and bishop definitions as any object sharing either a 
common edge or vertex to be considered as a neighbour, 
defines ijW =1  for entities that shares common edge or 

vertex with the region of interest otherwise ijW = 0 . 

In Cartesian space quantification of location contiguity 
matrix is defined based on distance and inverse distance 
square between centers of regions or points. 
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where ijd  is distance between center of thi  and thj  

location. r is prespecified radius distance. The matrix W is 
symmetric and by convention the matrix always has zero 
entries on main diagonal (a lattice/point is not 
contiguous/distant to itself), but if it is non symmetric has 
implication for complexity of estimation and testing 
procedures and it is not sensitive to number of topological 
transformations. The transformed form of W often used in 
applied work to convert matrix to have row sum of unit by 
standardizing each elements of W by row totals to facilitate 
the interpretation of the model coefficients, however, for 
distances weights standardization may result in loss of 
meaningful economic interpretation. 

The row standardized contiguity matrix W is called spatial 
weighted matrix. Spatial weight matrix defines the structure 
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and intensity of spatial effect. The ultimate objective of the 
use of spatial weight matrix in spatial data analysis 
(particularly, spatial econometrics models) is to relate variable 
at one point in space to the observations for that variable in 
other spatial units in the system, and it serves as lag operator in 
analogies to time series context [3] and [31]. 

Spatial Dependence and Heterogeneity 
The spatial heterogeneity is simply structural instability in 

the form of non constant error variances (heteroskedasticity) 
and/or spatial varying of model parameters [31]. In a 
regression context, spatial effects pertain to spatial 
dependence and spatial heterogeneity. Spatial dependence 
occurred due to either measurement error or spatial dimension 
of social process in aspect of modeling. Two broad sources of 
spatial dependence are generally pointed out. First, It is a 
result of spatial interaction effects such as spatial aggregation 
problems, spatial spillovers and factor mobility (spatial 
externalities). Second, It may be due to the measurement 
problems resulting from inherit spatial organization and 
spatial structure of phenomena; the fact that administrative 
borders may not coincide with the borders of social interaction 
[3]. 

2.4.1. Exploratory Spatial Data Analysis (ESDA) 

ESDA is a set of techniques aimed at, describing and 
visualizing spatial distributions, identifying a typical 
localizations or spatial outliers, detecting patterns of spatial 
association, clusters or hot spots, and suggesting spatial 
regimes or other forms of spatial heterogeneity [26] and [3]. 
These techniques provide measures of global and local spatial 
autocorrelation. Spatial autocorrelation can be defined as the 
coincidence of value similarity with location similarity or 
dissimilarity. 

Global and Local Measures of spatial Autocorrelation 
Tests for global spatial autocorrelation examine whether the 

data as a whole exhibit spatial autocorrelation (against Ho: No 
spatial autocorrelation) as well as the strength and direction 
(positive or negative) of any spatial autocorrelation. Tests for 
local spatial autocorrelation (again, against Ho:No spatial 
autocorrelation) identify particular observations that are 
autocorrelated with neighboring observations of the 
dependent variable of interest and also determine the strength 
and, depending upon the statistic, also the direction of this 
spatial autocorrelation [2]. 

The Moran Scatter plot enables us to visualize the linear 
correlation between the spatial lag Y  and WY . Specifically, 
WY is plotted against Y  and the Moran’s I coefficient will be 
the slope of the regression curve [3]. In additions to this, 
inspection of global and local spatial instability is carried out 
by the means of the Moran scatter plot [2], which plots the 
spatial lag, against the original values. 

Measures of Local Autocorrelation 
These measures are used when there is no global 

autocorrelation, and in case where measure of global does not 
enable us to appreciate the regional structure of spatial 
autocorrelation. One can wonder which regions contribute 
more to the global spatial autocorrelation, whether there are 

local spatial clusters of high or low values, and finally to what 
point the global evaluation of spatial autocorrelation masks a 
typical localizations or pockets of local non stationary. The 
analysis of local spatial autocorrelation is carried out with two 
tools. First, the Moran scatter plot which is used to visualize 
local spatial instability [2], and second local indicators of 
spatial association which are used to test the hypothesis of 
random distribution by comparing the values of each specific 
localization with the values in the neighboring localizations 
[2]. 

The four different quadrants of the scatter plot correspond 
to the four types of local spatial association between a region 
and its neighbors: (HH) a region with a high value surrounded 
by regions with high values in Quadrant I, (LH) a region a 
with low value surrounded by regions with high values in 
Quadrant II, (LL) a region with a low value surrounded by 
regions with low values in Quadrant III, (HL) a region with a 
high value surrounded by with low values in Quadrant IV. 
Quadrants I and III represents the presence of positive spatial 
autocorrelation, where as quadrants II and IV represent the 
presence negative spatial autocorrelation [2]. [3] defines a 
local indicator of spatial association as any statistics satisfying 
two criteria. First, the LISA for each observation gives an 
indication of significant spatial clustering of similar values 
around that observation, and second, the sum of the LISA for 
all observations is proportional to a global indicator of spatial 
association. The local version of Moran’s statistics for each 
region/location is given as: 
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[2] gives two interpretations for local Moran’s statistics (or 
LMI); first they can be used as indicators of local spatial 
clusters (or hot spots) which can be identified as locations or 
sets of neighboring locations for which the LISA are 
significant and as they can be served diagnostics for local 
instability. That means for significant outliers with respect to 
the measure of global spatial autocorrelation, typical 
localizations or pockets of non stationary. The second 
interpretation of the LISA statistics is similar to the use of a 
Moran scatter plot to identify outliers and leverage points for 
Moran’s I. 

Diagnostics Tests of Spatial Dependence 
Moran’s Test for Regression Residuals 
A well known test for spatial autocorrelation in the 

regression residuals is developed by [20] which is similar to 
Moran’s I: The moran’s I is given by 

0

=
n U WU

I
S U U

′
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where, U is the vector of residuals. 
Statistical inference can be based on the assumption of 

asymptotic normality, but an exact approach depending on the 
matrix Y is available too, although rather cumbersome to 
apply. Moran’s I for regression residuals is a locally best 
invariant test and based on moments estimation [20] and [3]. 
For normally distributed errors the distribution of the 
standardized Moran’s statistic is shown to be asymptotically 
normal. In order to carry out an operational test, both the 
expected value and the variance of I are needed. 

Lagrange Multiplier (LM) Test 
The LM-lag test is introduced by [3] tests the absence of 

spatial dependence of the endogenous variable. The study 
demonstrated the similarity of Moran’s I for regression 
residuals to a Lagrange multiplier statistic. This statistic is 
included within a general framework for testing spatial 
dependence and spatial heterogeneity (heteroskedasticity) as 
presented in [3] following the approach of [4]. The LM test 
statistic for spatial error is defined as: 

2
2

1
= ( )

U WU
LM

T S
λ

′
              (3) 

where, S is the maximum likelihood estimate of variance and 
T is a scalar computed as the trace of a quadratic expression in 
the weight matrix which is given by 2= ( )T tr W W W′ + . And 
LM test statistic for spatial lag dependent is expressed as: 
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is a part of the estimated information matrix, b the OLS 
estimated parameter vector, and M the projection matrix 
expressed as 

M= IX(X’X) -1 X’             (5) 

Both LM tests for lag and error are asymptotically 

following a 2χ  distribution with one degree of freedom [3]. 

LM tests for lag and error are one directional, so that tests do 
not consider the presence of the alternative form of spatial 
dependence. As a consequence, they are not robust when the 
alternative form of dependence is present [3]. In other words 
tests are labeled robust because the test statistics account for 
the potential presence of a spatial lag or spatially correlated 
errors when testing for the presence of spatially correlated 
errors or a spatial lag, respectively [3]. 

The test for a spatial error process robust to the local 
presence of a spatial lag is: 

     (6) 

This clearly shows the subtraction of a correction factor that 
accounts for the local misspecification of a spatial lag process 
[31]. The test for a spatial lag process robust to the local 
presence of a spatial error is given by: 
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The robust LM diagnostics have reduced power in 
comparison to the unidirectional LM diagnostics in the 
absence of the alternative form of spatial dependence. As a 
result, they are more prone to Type II errors and are less prone 
to Type I errors than their non-robust counter parts [3]. 

The power of the Lagrange Multiplier spatial error (lag) test 
against a spatial lag (error) model seriously complicates the 
work of the practitioner of spatial modeling techniques. If both 
tests are significant, which underlying model is then correct? 
This issue is addressed in a way one can select model 
corresponding to test statistic with highest value. Although the 
Lagrange Multiplier diagnostics assume normally distributed 
errors, [2] find that the robust LM diagnostics are robust to 
non normality. However, [3] find that the one directional LM 
diagnostics are robust to non normality in large samples. In all 
of these tests discussed above the null hypothesis is non 
existence of spatial autocorrelation in the OLS residuals and 

large values of test statistic ( 2χ ) with degree of freedom one 

lead to rejection of null hypothesis. If the OLS diagnostics 
indicate the existence of spatial lag dependence or spatial error 
dependence, one can estimate autoregressive (spatial lag) or 
spatial error model via maximum likelihood estimation. 

2.4.2. Modeling Spatial Dependence 

Spatial Regression Models 
In the spatial linear regression model, Spatial dependence 

can be incorporated in specification in two distinct ways; as an 
additional regressor in the form of a spatially lagged 
dependent variable ( )WY  provide spatial lag model, and in 
the form of spatial lag error structure (W ε ) provides spatial 
error model. In a simultaneous model, the focus is on the 
explanation of the complete spatial pattern; particularly 
simultaneous auto regressive models assume that the response 
at each location is a function not only of the explanatory 
variable at that location but of the values of the response at 
neighboring locations as well. 

Spatial Lag Model (SLM) 
The simultaneous spatial lag regression model for 

dependent variable of observation i and k independent 
variable takes the following form: 

=i ij j ir r iY w Y Xρ β ε+ +∑ ∑           (8) 

where, ρ  spatial autoregressive coefficient which is scalar, 

the k explanatory variable and intercept are irx , 

= 0,1, 2,...,r k  with associated coefficient rβ , ijw  denote 

the ( , )i j  the element of W , and iε  is the disturbance term. 

The matrix notation of the model is =Y WY Xρ β ε+ +  
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where, ε  is a vector of error terms which is independent and 
identically multivariate normally distributed with mean vector 

zero and constant diagonal variance-covariance matrix 2
nIσ , 

Wy  is spatial lag operator, Y is vector of dependent variables, 

X  is a designed matrix of explanatory variables including 
intercept of ones, and β  is vector of coefficients of 

regression model. The scalar coefficient ρ  is parameter to be 

estimated that will determine the strength of the average 
(overall observations, =1,2,...,i n ) association between the 
dependent variable values for regions (observations) and of 
those values for their neighboring regions [20]. In spatial lag 
model, the spatial lag term Wy  is correlated with the 

disturbances, even when the errors are identically and 
independently distributed. 

Spatial Error Model (SEM) 
With similar set in spatial lag model, the spatial error model 

for observation i is noted as: 

=0 =1

=i ir r ij j i

r j

Y X Wβ λ ε ε+ +∑ ∑         (9) 

where, λ  is a spatial autocorrelation coefficient which is 
scalar, the k explanatory variable and intercept are irx , 

= 0,1, 2,...,r k  with associated coefficient rβ , ijW  denote 

the ( , )thi j  element of W , and the disturbance term iε  

independently and identically normally distributed with mean 
zero and constant variance. 

The matrix notation of SAR error model is: 

=Y X Uβ + , =U WUλ ε+         (10) 

This type of spatial regression is appropriate when the 
concern is with correcting for the potentially biasing influence 
of the spatial autocorrelation due to the use of spatial data 
irrespective of whether the model of interest is spatial or not. 

Spatial Model Diagnosis 
Breusch-Pagan test of heteroskedasticity for random 

coefficient is similar to test under OLS regression but here the 
residuals and estimate of residuals obtained from spatial 
models (spatial lag or error). The tests asymptotically achieve 

2χ  distribution with K degree of freedom. If these statistics 

are greater than critical value one rejects null hypotheses 
(Homoskedasticity). If test reject null hypothesis we apply 
spatial first stage least square estimation or we fit other models 
like spatial expansion or geographical weighted regression. 
Likelihood ratio test in spatial model is an alternative the 
asymptotic significance test on the spatial autoregressive ρ  

and error coefficient λ . It compares the LR from the OLS 
model to the LR from the spatial models, and this statistic is 

asymptotically distributed as 2χ . We reject the null 

hypothesis of no Spatial autocorrelation if the test statistic 
exceeds critical value at 5%  level of significance. It is 
similar to traditional specification test (Wald test and LM) that 
comparing the null model (OLS) with spatial model (either 
spatial lag or spatial error). 

Condition Number (K): It is Eigen system analysis which 
was used to test near dependence among independents based 
on Eigen value of the designed matrix (X). K is the ratio of 
largest Eigen value to the smallest Eigen value, K less than 30 
provides a reasonable threshold for no multicollinearity [11]. 
Nevertheless if sever multicollinearity exist we took measures 
of omitting some variables, applying principal component 
analysis, centering or scaling regression data and other 
measures. 

Jarque-Bera Test (JB): In addition to visualize normality of 
error from histogram and residual plots like normal Q-Q plot, 
Jarque and Bera develop test that tests the hypothesis of data 
are come from normal population or error are normally 
distributed. This type of spatial regression is appropriate when 
the focus of interest is the assessment of the existence and 
strength of spatial interaction and suitable to filter out spatial 
dependence that comes from spatial spillovers. In other words 
spatially lagged dependent model is appropriate when we 
believe that the values of dependent in one unit i are directly 
influenced by the values of dependent variable found in i’s 
neighbors; this influence is above and beyond other covariates 
specific to i. 

Tests of Heteroskedasticity 
If the inefficiency of OLS is thought to be serious drawback; 

so to test heteroskedaticity in residuals often we use residual 
versus fitted value plot which is descriptive, but 
Breusch-pagan test, Koenker-Bessett test and White test are 
quite inference form tests. Both Breusch-pagan and 
Koenker-Bessett tests are based on random coefficient by 
assuming specific functional form for heteroskedaticity, and 
Koenker-Bessett is robust to non normality (i.e though 
normality is not met we use it than Breusch pagan test). Both 

tests asymptotically achieve 2χ  distribution with K degree 

of freedom. If these statistics are greater than critical value one 
reject null hypotheses (Homoskedasticity). 

Measures of Fit for the Spatial Models 
Even though some times F test for the significance of 

overall model shows model is adequate, in addition to 
adequacy checking tests and analysis for models in the same 
class but differently specified it is compulsory to utilize other 
measures of fit to make comparison between or/ and among 
models. So 2R , Log likelihood, Akaike information criterion, 
Schwarz criterion and standard error of regression are also 
used. 2R  refers to coefficient of determination that express 
proportion of variation explained by the regressors in our 
model. Higher Log likelihood value signifies good fit. The 
lower value for AIC and SC show best/better fit of model. 

2.4.3. Bayesian Spatial Analysis 

The concept underlying Bayesian spatial modeling is Bayes’ 
theorem, a theorem that considers both the distributions of the 
data and the unknown coefficient estimates [31]. Bayesian 
spatial modeling embraces most spatial models, such as the 
spatial lag model, the spatial error model, and geographically 
weighted regression, as long as the spatial statistical model 
can be estimated with Bayesian methodology. 

The flexibility of the Bayesian spatial Models allows us to 
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perform an Spatial Regression [15] at the same time as we 
consider independent variables and spatial random effects. By 
including covariates in our model we aim to assess and 
remove the effect of potential confounders or risk factors. The 
assessment of the importance of a covariate is indicated by the 
estimated value of its coefficient and its associated probability 
interval. If, for example, the 95%  credible interval does not 
contain the value 0, we may assume that the coefficient is 
significant and, if greater than zero, it will indicate a positive 
relationship between the risk and the variable. 

Spatial Correlation 
Within spatial applications it is often found that correlation 

will exist between spatial units. This correlation is 
geographical and relates to the basic idea that locations close 
together in space often have similar values of outcome 
variables while locations far apart are often different. This 
spatial correlation(or autocorrelation as it’s sometimes called) 
must be allowed for in spatial analyses. This may have an 
impact on the structure and form of likelihood models that are 
assumed for spatial data. The assumption made in the 
construction of conventional likelihoods is that the individual 
contribution to the likelihood is independent and this 
independence allows the likelihood to be derived as a product 
of probabilities. However, if this independence criterion is not 
met, then a different approach would be required. 

Conditional Independence 
The idea of inclusion of spatial correlation at a hierarchical 

level above the likelihood is a fundamental assumption often 
made in Bayesian spatial modeling. This means that the 
correlation appears in prior distributions rather than in the 
likelihood itself. Often parameters are given such priors and it 
is assumed that conditional independence applies in the 
likelihood. Note that this approach to correlation does not 
completely account for spatial effects as there can be residual 
correlation effects after inclusion of confounders. These 
effects could be due to unobserved or unknown confounders. 
Alternatively they could be due to intrinsic correlation in the 
process. Hence the assumption of conditional independence 
may only be valid if correlation is accounted for somewhere 
within the model. A model for spatial dependence in the errors 
for outcome Y take the form 

Y = xβ+e                   (11) 

e = ρ We+u 

where ρ  is an unknown correlation parameter, where Y, e 

and u are vectors of length n, and x is of dimension nxp . Here 

the u denote spatially unstructured errors, which are 

frequently taken as homoscedastic iu ~ 2(0, )N σ . If the 

interactions are scaled within rows, then the permissible 
maximum of ρ  is 1 [4] and the permissible minimum is the 

smallest eigenvalue of W, which is greater than 1−  but less 
than 0. Since spatial correlation is positive in the great 
majority of econometric or health applications, a prior on ρ  

constrained to [0, 1] is feasible in many applications. 
Conditional priors 

All parameters within Bayesian models are stochastic and 
are assigned appropriate probability distributions. Hence a 
single parameter value is simply one possible realization of 
the possible values of the parameter, the probability of which 
is defined by the prior distribution. The prior distribution is a 
distribution assigned to the parameter before seeing the data. 
Note also that one interpretation of prior distributions are that 
they provide additional ’data’ for a problem and so they can be 
used to improve estimation or identification of parameters. It 
combines prior knowledge and observation data to obtain 
posterior distributions for parameters of interest. 

Letting Q =Âˆ I- ρ W, the precision matrix 1E −  of the 

errors e  in Equation (11) may be derived as 

1 =E Q Qτ− ′                  (12) 

where τ = 2σ − . A full multinormal scheme for the e  could 
be used, with the errors sampled simultaneously fromtheir 
joint prior 

1~ (0, )ne N E−                 (13) 

However, a conditional scheme is possible, and may be 
simpler to sample. Modelling of spatially correlated errors 
may proceed by initially specifying either the joint 
multivariate distribution of the vector, or the univariate 
density of each areas error, ie , conditional on the current 

estimate of errors in other areas ( je , j ≠ i). Conditions that 

ensure the joint density is proper (so that the ie  are 

identifiable) when the model specification starts with a 
conditional rather than the joint prior are discussed by [43] and 
[4]. One possible conditional prior (the conditional 
autoregressive or CAR prior) expresses ie  in the centred 

univariate Normal form, ie ~N(M_i, 2σ ), where mean of each 

area’s error 

iM = ρ
j∑ ijc ie              (14) 

is a weighted average of errors in contiguous areas, and ρ  is 

bounded by the inverses of the minimum and maximum 
eigenvalues of C. (Note that the interaction matrix for this 
form of prior needs to be symmetric.) 

One may also have a spatial effects or spatial autoregression 
model, with spatial lags in the outcomes themselves [4], with 

Y = xβ+ ρ WY +u            (15) 

where u is white noise. Spatial dependence in both Y and e  
may occur in the same model, for example: 

Y = x β + 1ρ WY+u; e= 2ρ We+u 

where e  is multinormal as in Equations above. In some 
situations, a spatial lag in the outcome might not be 
substantively sensible. If it were, then a sensitivity analysis 
might consider both correlation in both spatial effects and 
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spatial errors, and also consider non-constant variances in the 

iu  [31]; it might also encompass several forms of spatial 

interaction matrix, even if these are taken as fixed within the 
modelling [4]. The means for outcome iY  are 

iµ = ρ Wy+x_i β - ρ WX β             (16) 

Spatial heteroscedasticity may be parameterised in various 
ways: either one may suppose all areas to have distinct 

variances, or there may be groups of areas rS  with 2
iσ =

2
rσ  if i∈  rS . 

[31] proposes scale mixtures (with each area having its own 
variance) to robustify inferences against outlier data points. 
This applies even after spatial autocorrelation is explicitly 
modelled, and so would relate to the density assumed for the 

iu . Thus, a scale mixture on the 2σ  is equivalent to 

assuming Student t rather than normal iu . 

Noninformative Priors 
Often prior distributions are assumed that do not make 

strong preferences over values of the variables. These are 
sometimes known as vague, or reference or flat or 
noninformative prior distributions. Usually, they have a 
relatively flat form yielding close-to-uniform preference for 
different values of the variables. For parameters on an infinite 
range, such as regression parameters, then a distribution 
centered on zero with a large variance will usually suffice. 

Posterior Distribution 
In Bayesian inference, the posterior distribution, links the 

assumptions made (the prior distribution) with the empirical 
evidence (the likelihood). The goal is to use the characteristics 
of this distribution (say the mean or the quantiles) to make 
inferences about β . Because the parameters are themselves 

random variables, it is natural to deal with them in a hierarchical 
way. This means that we are assuming that their distribution 
may depend on other parameters, called hyperparameters. 
These hyperparameters are also random variables with their 
own prior distributions, called hyperpriors. 

( / ) ( )
( / ) =

L Y g
P Y

C

θ θθ              (17) 

Where, 

C= ( / ) ( )L Y g dθ θ θ∫  

where ( )g θ  is the joint distribution of the θ  vector. 

Alternatively this distribution can be specified as a 
proportionality: 

( / ) ( / ) ( )p Y L Y gθ θ θ∝ . 

Inference for all of the Bayesian Spatial models is based on 
MCMC simulation, using a combination of Gibbs sampling 
and Metropolis steps. 

Measures of Fit and Diagnostic for Bayesian Spatial 
Analysis 

We can use formal convergence tests for Bayesian Spatial 
analysis. Briefly, Geweke diagnosis aims to diagnose lack of 
convergence using a single chain and multiple parallel chains, 
respectively. These functions also have graphical versions that 
show how convergence is improved by discarding extra burn-in 
iterations at the beginning of the series. Geweke can be 
computed to assess convergence. The DIC criterion is used for 
comparing the overall fit of multiple models applied to the same 
data, and lower values indicate a better fitting model [20]. 

3. Results and Discussion 

The objectives of this study was to assess and model the 
Spatial dependence of malaria prevalence and Its risk factors in 
the rural part of SNNPR, Ethiopia. The data used for analysis is 
2011  EMIS from which the rural area data was filtered and 
taken. Results for tests of Spatial autocorrelation in the malaria 
prevalence rate to determine the distribution pattern of malaria 
and its modeling of spatial Autoregressive model is presented in 
this chapter. Additionally, Bayesian spatial analysis of the 
malaria prevalence rate was incorporated in this session to 
provide inference which included prior information. 

3.1. Descriptive Statistics 

Results of the descriptive part shows, the lowest malaria 
prevalence rate of woreda in rural SNNP region was 1.070  
per 100  people and the highest was 13.00  per 100  people 
occurred at Rural area of the region. In the rural woredas of the 
region on average it was 6.81 Malaria Prevalence per 100  
people of a district and standard deviation is 2.513 . Malaria 
prevalence was higher in the region compared to the country 
level average prevalence 4.5  [16]. 

A box map in Figure 1 was to identify woredas that had 
below and above average malaria prevalence rate in Rural 
SNNP region, It shows the location of every rural area woreda 
within the overall geographical distribution of malaria 
prevalence rates. Woreda that had malaria prevalence rates 
lower than average of the region are indicated by high bright 
and less bright blue color in the map and they were clustered 
around the North, Southeast and south west, while the high 
dark and less dark red color represents woredas that had above 
average malaria prevalence rate which were concentrated in 
Western, south and some part eastern rural part of the region. 

 

Figure 1. Box Map for Distribution of Malaria Prevalence Rate in SNNP 

region. 
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This box map provided some indication of spatial clustering 
in rural area of SNNP region, however the visual inspection of 
maps has long been recognized by cartographers as unreliable 
in terms of detecting clusters and patterns in the data as human 
perception is not sufficiently rigorous to assess ’significant’ 
clusters and indeed tends to be biased towards finding patterns, 
even in spatially random data [33]. Consequently, we should 
turn to a consideration of a global statistic for spatial 
autocorrelation in the next section. 

3.2. ESDA of Malaria Prevalence in Rural Part of Woredas 

of the Region 

Moran’s I test is perhaps the most common global test, 
having an argument to use an adjustment for a ranked 
continuous variable. Therefore, the result for moran’s statistic 
is 0.317  which is significant at 5%  significance level, 
indicating positive spatial autocorrelation across the woredas. 
The pseudo significance level was obtained from the reference 
distribution of 999  permutation. From table 3 the Moran’s 
test statistic 0.317  is greater than the theoretical mean of 
I(E(I)= 0.0068− ). This shows the existence of positive spatial 
autocorrelation in the malaria prevalence. 

Table 2. Results of Moran’s I statistics for measuring spatial autocorrelation 

in Pattern of Malaria prevalence in rural of SNNP region. 

Variable Name Moran’s I Standardized Value p-value 

PVRATE 0.317 -5.6630 0.001 

*significant at 5%  level 

3.2.1. Local Measures of Spatial Association 

In the global test statistic, the result indicated a significant 
positive spatial autocorrelation(clustering). Local statistics are 
used to identify where high/low values cluster. 

As shown in Figure 2 the Moran scatter plot of malaria 
prevalence rate, which represent a standardized malaria 
prevalence rate of a woreda in the x-axis versus the weighted 
average (spatial lag) of standardized malaria prevalence rate 
of its own woreda in the y-axis, which disaggregate the global 
spatial autocorrelation into four types of association (HH, HL, 
LH, LL). Points in quadrant I shows a district with high 
malaria prevalence rate (i.e., relative to average of the 76  
woredas) was surrounded by woredas of high malaria 
prevalence rate (HH), quadrant II shows districts with low 
malaria prevalence rate surrounded by woredas with high 
malaria prevalence rate (LH), quadrant III indicated that 
districts with low malaria prevalence rate surrounded by 
woredas with low malaria prevalence rate (LL), and quadrant 
IV indicated that districts with high malaria prevalence rate 
were surrounded by districts with low malaria rate (HL). 
There were more points in quadrant I and III, and this shows in 
descriptive manner, a positive spatial autocorrelation patterns 
in the distribution of malaria prevalence rate among woredas 
of the region. However, this needs a formal statistical test to 
conclude. 

 

Figure 2. Univariate Moran’s Scatter Plot. 

The following two figures present univariate LISA 
significance and univariate LISA cluster maps of malaria 
prevalence rate in the woredas of rural area SNNP regional 
state respectively. LISA is a class of statistics that provides 
woredas specific information and estimates the extent of 
spatial autocorrelation of the value of malaria prevalence rate 
in a particular woreda with its neighbors. 

 

Figure 3. Univariate LISA Significance Map. 

Figure 3 shows LISA significance map results of local 
Moran’s I test for local spatial autocorrelation patterns of 
malaria prevalence rate. In the map, the bright green and green 
shade corresponds to location of malaria prevalence rate that 
had significant local spatial autocorrelation at 5%  and 1%  
level of significance respectively. There were about (7)  
woredas that had significant local spatial autocorrelation 
patterns of malaria prevalence rate in the regional state at 
significance level, pointing out that there were presence of a 
spatial association of malaria prevalence in the rural districts 
of the region. 
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Figure 4. Univariate LISA Cluster Map. 

LISA cluster map, useful in identifying the type of spatial 
association, was presented in Figure (4). The high-high (HH), 
low-low (LL), low-high (LH) and high-low (HL) association 
of malaria cases were shown by red, blue, black and grey 
colors respectively. By saying high or low values, it is to say 
high or low values relative to neighboring woredas. Positive 
spatial autocorrelation or clustering of similar values were 
indicated by high-high or low-low locations where as negative 
spatial autocorrelation or spatial outlier is indicated by 
high-low or low-high locations. 

Clustering or hot spot locations of high malaria prevalence 
rate was in the south-west parts of the region in rural woredas 
of Yeki, sheko, Northern Bench, southern Bench and Minit 
shasha where as cold spot locations or low clustering of 
malaria prevalence was around south east parts of the region in 
rural districts of Dara and Lemmo. As a result, 5  woredas 
had HH, 2  woredas LL, 2  woredas LH and 1  woredas had 
HL association of malaria prevalence rate and among rural 
area of the districts with significant local spatial association. 
This supports the evidence of positive spatial autocorrelation 

pattern in distribution of malaria prevalence rate across the 
region obtained above in the results of Moran’s I statistics for 
testing of global spatial autocorrelation. 

3.2.2. Diagnostic for Spatial Dependence in Residuals of 

OLS 

The Moran’s I test is a general test on Spatial correlation 
without giving precise information on the particular Spatial 
structure and it provides evidence for a positive and 
significant spatial dependence in OLS residuals (Moran’s I 
value have p-value of 0.001 < 0.05 ). Thus, the null 
hypothesis of Spatial independence of residuals OLS method 
was rejected indicating that OLS is inappropriate for the 
problem under consideration since the assumption of 
independence is violated. However, It is of great importance to 
seek for the nature of the spatial autocorrelation (wether the 
autocorrelation present in the residuals is due to spatial lag or 
spatial error process) even though it is not provided by 
Moran’s I test. The most commonly used test in identifying the 
form of spatial dependence in the data is Lagrange multiplier 
(LM) test. The simple versions of LM test are powerful but not 
robust in local misspecification of the model, So the LM test 
for spatial lag dependence can be significant even if the form 
of the spatial dependence resembles spatial error dependence 
or vice versa. Thus, it is better to look at their robust part so as 
to come up with the correct identification of the form of spatial 
dependence in the data. As suggested by Lagrange multiplier 
(lag) test which is significant at 5%  level of significance, the 
spatial lag is important to model determinants of malaria 
prevalence rate. The robust Lagrange multiplier tests, which 
provides a means of discriminating between the spatial lag or 
spatial Error model, spatial lag significant at 5%  
significance level suggest that spatial lag(with larger value= 
5.1190 ) can be used in modeling Malaria Prevalence rate. 

Table 3. Diagnostic test of spatial dependence in OLS regression residuals. 

TEST MI/DF VALUE PROB 

Moran’s I (error) 0.1977 2.2916 0.0219* 
Lagrange Multiplier (lag) 1 9.0526 0.0026* 
Robust LM (lag) 1 5.1190 0.0236* 
Lagran. Multiplier (error) 1 4.0275 0.0447* 
Robust LM (error) 1 0.0940 0.75917 

*significant at 5%  level 

3.3. Fitting Spatial Regression 

3.3.1. Spatial Lag Model 

Here, we applied a statistical model which incorporates spatial dependence raised from spatial lag of the dependent variable, 
by adding the spatial lag of malaria prevalence rate on the right hand side of the OLS regression equation to represent the direct 
influence of the neighboring districts. 

Table 4. Maximum Likelihood Estimate for Factors of Malaria Prevalence Rate in Spatial Lag Model. 

 Estimate Std. Error z value Pr( > | z | ) 

CONSTANT 6.0058 1.8556 3.23645 0.0012* 
MEANAL -0.0030234 0.00061444 -4.92058 0.0000* 
HHSIZE 5.25473e-00 2.0701e-005 2.53834 0.0111* 
AVHHMBR 0.10920 0.14034 0.778143 0.4364 
Dng Wtr 100 0.045107 0.0150627 2.99463 0.0027* 
Toilet 100 0.0066709 0.009618 0.693586 0.4879 
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 Estimate Std. Error z value Pr( > | z | ) 

RADIO 100 0.024650 0.0086856 2.83811 0.0045* 
Phone ML 0.012078 0.012499 0.966318 0.3338 
Type 0.0001273 0.00737 0.0172639 0.98623 
W Type 0.021588 0.008553 2.52406 0.0116* 
R Type 0.0043742 0.009282 0.471227 0.6374 
SPd12m -0.024009 0.008945 -2.68401 0.0072* 
HB Nets 0.0010373 0.009267 0.111929 0.9108 

*significant at 5%  level 
Adjusted R-squared: 0.494241 
ρ : 0.293574, LR test value: 9.6334, p-value: 0.00191 

Log likelihood: -152.644 for lag model, AIC: 333.287, Sigma-square =3.15315, S. E of regression: 1.77571 

Results from table 4 reveal maximum likelihood estimate 
for factors of malaria prevalence rate in Spatial Lag Model. 
Moreover, Estimated coefficient for spatial lag of malaria 
prevalence rate ( ρ ) was 0.293574 , with p-value ( .00191 ) 
which was positive and significant at 5%  level of 
significance indicates that malaria prevalence rate in one 
woreda depends directly on the rate in its neighboring districts. 
This result supports what we have obtained using Moran’s I 
statistics and cluster map in explanatory data analysis of 
malaria prevalence rate in the previous section. The 
importance of including spatial lag effects in our model is 
supported by the positive and significant value of the the 
coefficient. Significant coefficients for the variables implies 
that malaria prevalence rate in a given area depends on the 
change in explanatory variable in the same area controlling 
the effect raised due to spatial lag. The variables having 
negative and statistically significant effect on malaria 
prevalence are mean altitude and percentage of households 
sprayed in the last 12 months. 

As discussed in the previous section, positive effect means 
that for a unit change in explanatory variable increase malaria 
prevalence rate in a given woreda by magnitude of estimate of 
parameter for that explanatory variable controlling for the 
effect of neighbor woredas, whereas negative effect is to mean 
that a unit change in the explanatory variable decreases 
malaria prevalence rate in a woreda by a magnitude of 
estimate of parameter for explanatory variable conditioning 
the neighbor woredas malaria rate and other variables 
constant. 

Proportion of households having access to piped water, 
Proportion of households having access to radio, House hold 
size of the woreda and Main construction material of the 
room’s wall have positive and statistically significant effect on 
malaria prevalence rate of the rural area of the region. The 
interpretation of the coefficients also, For example 1%  
increase in Percentage of house-holds having access to radio 
in certain district increase malaria prevalence rate in that 
particular district by 0.0246%  keeping the effect other 
variables fixed. The parameter estimate 0.0240  for 
percentage of households sprayed in the last 12 months 
indicates that 1%  decrease in Percentage household with 
sprayed insecticide increase the possibility of malaria 
prevalence infection in that woreda and its neighbors by 
0.0240% . Table 4 also revealed measures of fit for models. 
R-square which equals 0.4942  implies that 49.42%  of 

variation in malaria prevalence rate was explained due to 
variation in the explanatory variables in the model and spatial 
lagged dependent variable. The significance of the over all 
model is assured by using likelihood ratio test which is 
analogeous to the F statistic of OLS model. Hence, results 
from Table 5 indicate that the overall model is significant at 
5%  level of significance indicating that maximum likelihood 
estimation was better in the explanation of the geographical 
variations of malaria prevalence rate than estimation 
procedure in the presence of spatially lagged dependence. 

3.3.2. Spatial Error Model 

The spatial error model evaluates the extent to which the 
clustering of malaria prevalence rate not explained by 
independent variables can be accounted for with reference to 
the clustering of the error terms. In this sense, it captures the 
spatial influence of unmeasured independent variables(i.e 
variables which are not included in the study but may have 
significant effect on malaria prevalence rate). Results of 
maximum likelihood estimates of the spatial error model were 
displayed in table 6. Spatial Autoregressive term ( λ ) was 
0.378  with p-value 0.01190  and it is significant at 5%  
level of significance indicating that the spatial autocorrelation 
present in residuals of OLS was due to a geographic clustering 
of omitted variables or variables which are not included in the 
modeling of the factors for malaria prevalence using OLS 
regression model. 

3.3.3. Diagnostic Test Results of Spatial Models 

The invertablity or non singularity of the design matrix of 
explanatory variables, which is one of the basic assumption in 
multiple linear regression is diagnosed using condition 
number as a rule of thumb. Values of a condition number 
larger than 30  is considered to be implication for the 
existence of multicollinearity. In table 7 the condition number 
is 29.85  which indicates no existence of multicollinearity, i.e 
no interdependence among explanatory variables considered 
in the model. The hypothesis of normality of residuals is not 
rejected, since the Jarque-Bera test have p-value of 0.77133  
which is greater than 0.05 . Moreover, the homoskedasticity 
hypothesis is also not rejected from Koenker-Basset and 
Breush-Pagan tests, since the p-values for both tests are not 
significant at the specified level of significance and the tests 
suggest that the variance of the error is constant. 
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Table 5. Diagnostic Tests Results of Spatial Lag model. 

Test & measures of fit S(Lag) S(error) 

Robust LM (p-value) 0.02366* 0.75917 
R-squared 0.494241 0.483217 
Log likelihood (LIK) -152.644 -154.297386 
Sigma-Square 1.77571 1.79496 
St. Error of Regression 3.15315 3.222 
Likelihood Ratio Test 9.6334 6.3260 

*significant at 5% level; Conditon number: 29.85  

The two spatial regression models discussed so far have 
nearly similar values for the coefficients of regression and 
they both have significant LRT. However, the spatial lag rather 
than the spatial error dependence is supported by the robust 
measures. 

Results in table 7 is regarding measures that are included to 
maintain comparability with the fit of spatial regression 
models. They are the log likelihood ratio, the Akaike 
information criterion and Schwarz criteria. These three 
measures are based on assumption of multivariate normality 
and corresponding likelihood for standard regression model. 
The higher loglikelihood value signifies the better fit. The 
lower value for Akaike and Scwarz information criteria show 
best/better fit of model. 

The measures of fit imply that Spatial lag model fits good to 
the data under consideration i.e because LRT equals to 9.6334  
and 6.3260 for spatial lag and for spatial error models 
respectively and the overall models are significant at 5%  level 
of significance, and also when we take log likelihood into 
consideration, the two models have slightly different estimate. 

Table 6. Tests and Measures of Fit. 

Test DF Value probability 

Jarque-Bera 2 0.5193 0.77133 
Breusch-Pagan test 12 17.8781 0.11944 
Koenker-Bassett test 12 17.3055 0.13846 
White test 122 86 0.0421* 

Test DF Value probability 

LRT 1 9.6334 0.00191* 

*significant at 5% level 

3.4. Results of Bayesian Spatial Analysis of Malaria 

Prevalence Rate 

The main results interpreted here refer to Bayesian spatial 
analysis. When performing this task, R software was 
employed with typically CARBayes  package which is 
mainly developed for this purpose. 

Prior Specifications 
A multivariate Gaussian prior is assumed for β , and the 

mean βµ  and diagonal variance matrix βε  are given as 

default values specified by the software with a constant 
zero-mean vector and diagonal elements of βε  equal to 

1000 . That is jβ , that is, jβ ( ; )j jN m v  for = 0,...,j p , 

and the default values specified by the software are ( jm =0; 

jv =1000). The scale parameter 2ν  for the Gaussian 

likelihood is assigned a conjugate inverse gamma prior 

distribution, where the default specification is 2ν : 
Inverse-Gamma (0.001, 0.001). The variance parameter 

default prior specification for 2τ  has = = 0.001a b  where 

as 2σ : Inverse-Gamma (a, b). 
The Moran’s I statistic equals 0.24425 with a corresponding 

p-value of much less than 0.05, which suggests that the 
residuals contain substantial positive spatial autocorrelation. 
To perform estimations, We generated simulations of the 
parameters with MCMC using the R software. Inference for 
this model is based on 24,000 MCMC samples, which were 
obtained following a burn-in period of 10,000 and thinning the 
remaining 240,000 samples by 10 to reduce their 
autocorrelation. 

Table 7. Posterior Quantities and DIC of Model with Covariates. 

 Median 2.5% 97.5% %accept Ge.diagnosis 

(Intercept) 8.3802 4.4170 12.2172 100.0 -0.5 
MEANAL -0.0035 -0.0049 -0.0021 100.0 0.1 
HHSIZE 0.0001 0.0000 0.0001 100.0 -0.5 
AVHMBR 0.0749 -0.2509 0.3994 100.0 -0.4 
Dng Wtr 100 0.0441 0.0093 0.0790 100.0 -0.3 
Toilet 100 0.0123 -0.0097 0.0348 100.0 0.3 
RADIO 100 0.0249 0.0045 0.0451 100.0 1.2 
Phone ML 0.0075 -0.0216 0.0368 100.0 -0.6 
F Type 0.0028 -0.0147 0.0202 100.0 0.3 
W Type 0.0237 0.0036 0.0440 100.0 1.4 
R Type 0.0081 -0.0135 0.0298 100.0 0.9 
SPd12m -0.0230 -0.0437 -0.0022 100.0 1.1 
HB Nets 0.0028 -0.0189 0.0242 100.0 -1.1 
nu^2 4.3504 3.1523 6.2530 100.0 -1.3 
tau^2 0.0062 0.0018 0.0477 100.0 -1.4 
rho 0.4829 0.0593 0.9218 41.8 0.3 

DIC = 342.6089; 

Table 7 shows the results of the Bayesian spatial estimates 
for the model parameters and random effects specifications. 
The residual spatial autocorrelation can be accounted for by 

adding a set of random effects to the model. Regarding these 
findings, the posterior median and 95%  credible intervals 
(2.5%,97.5%)  for selected parameters and for a single chain 
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Geweke’s diag criterion were presented. 
Regarding these findings, the covariates such as mean 

woreda altitude, Proportion of households having access to 
piped water, Proportion of households having access to radio, 
House hold size of the district and main construction material of 
the room’s wall, proportion of households sprayed in 12 months 
had statistically significant effect on malaria prevalence, as their 
95%  credible intervals do not include zero. 

We can also observe that Proportion of households having 
access to piped water, Proportion of households having access 
to radio, House hold size of the woreda and main construction 
material of the room’s wall had statistically significant and 
positive relationship with malaria prevalence. This means that 

increasing in Proportion of households having access to piped 
water, Proportion of households having access to radio, House 
hold size of the woreda and main construction material of the 
room’s wall raises malaria prevalence. On the other way round, 
statistically significant random terms reveal that the covariates 
explain only some of (don’t explain all) the variability in the 
Malaria prevalence rate of the woredas of rural area of the 
SNNP region, because none of the credible intervals of the 
variances include zero. The above output also shows that the 
random effects have modeled substantial spatial autocorrelation, 
as the posterior median for the spatial autocorrelation parameter 
ρ  is 0.4829 positive and significant. 

Table 8. Posterior Quantities and DIC of Model without Covariates. 

 Median 2.5% 97.5% n.sample %accept Ge.dig 

(Intecpt) 6.8157 6.245 7.378 24000 100.0 -0.6 
nu^2 6.2030 4.591 8.6807 24000 100.0 -0.8 
tau^2 0.0062 0.002 0.0445 24000 100.0 0.7 
rho 0.4884 0.069 0.917 24000 41.8 -0.7 

DIC = 357.5705; 

Table 8 presented the results of the Bayesian estimates for 
the model parameters without covariates, incorporating only 
the random effects. Hence, the random effects exhibit effects 
on the response Variable, as their 95%  credible intervals do 
not include zero. Both models included an unstructured 
random effects term and a spatially structured random effects 
term. The major difference is the first model was modelled 
with covariates where as the second without covariates. The 
first model had a DIC of 342.6089; when extended to the 
second model, the DIC raised to 357.5705 , a difference of 
15.0384 . The higher DIC for the second model indicates a 

poor fit relative to the fit of the first one. In our study, the 
presented results demonstrate that the parameters are tested 
for convergence using Geweke. diag. Hence since the Geweke. 
diag values for all parameters are in the range ( 1.96− ,1.96 ), 
clearly they are converged. Trace plots useful for diagnosing 
all posterior parameters β ’s are checked, a phenomenon in 

which the MCMC sampler covers the support of the posterior 
distribution which implies the MCMC outputs are a 
representative sample from the posterior distribution for the 
parameters. plots are attached on the appendices. 

 

Figure 5. Posterior Samples and Density Plot for ρ . 
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Moreover, the acceptance rate for ρ  quantifies the 

proportion of times the value proposed by the Metropolis 
updating step was accepted as the new value of the Markov 
chain. In contrast, due to the conjugacy between the Gaussian 

likelihood and the prior distributions for ( β ; 2ν ; 2τ ), Gibbs 

sampling is employed for updating these parameters, which is 
the reason for the 100%  acceptance rate. Plotting this object 
thus yields a trace plot(left panel) and a density estimate (right 
panel) of the Posterior samples and density plot for ρ . 

From figure 5, the first is a trace plot, which shows the 
evolution of the MCMC output as a time series for ρ , the 

second is a density plot, which shows a kernel density estimate 
of the posterior distribution. 

When the posterior distribution is very skewed, the 
posterior median can be a better summary statistic. According 
to the posterior density of β ’s shown in Figures, the 

coefficient of the covariate can be considered as significantly 
positive given that its posterior mean is greater than 0 and its 
95% credible interval is likely not to contain the value 0. 

Mapping Posterior prediction for Malaria Prevalence rate 
While predicting the malaria prevalence rate in the rural 

part of woredas of the region using the Bayesian posterior 
distribution, the Bayesian prediction has smaller standard 
deviation relative to the observed data (1.49 < 2.513) which is 
in line with study conducted by [37]. The following box map 
in Figure 6 shows the posterior medians(estimate) of the 
model fitted for each area, showing the pattern of Malaria 
prevalence of the rural area of the SNNP region. 

 

Figure 6. Map of posterior Means of the model fitted (Malaria prevalence). 

4. Conclusions and Recommendations 

4.1. Conclusion 

In this study, ESDA, spatial Regression models and 
Bayesian Spatial analysis are used to explore the geographical 
distribution of malaria prevalence rate using EMIS 2011 data 
for sample data aggregated at Woredas level of data filtered 
for the rural part of the SNNP regional state, Ethiopia. The 
spatial analysis results revealed positive spatial 
autocorrelation pattern of malaria prevalence rates in space. 
The result of model specification and measures of fits shows 
that, the spatial lag model was found to be better fit to the data 

and explain the geographical variations of malaria prevalence 
data in the region. The spatial lag model is found to be the 
correct choice to incorporate this spatial effect and so as to 
come up with unbiased and consistent parameter estimation. 

The Risk Factors Mean altitude of a given woreda, 
Proportion of households having access to piped water, 
Proportion of households having access to radio, Proportion of 
households having access to phone, Main construction 
material of the room’s roof and Proportion of household 
Sprayed Insecticide in the past 12 months have significant 
influence in explanation of malaria prevalence rate on the 
rural area districts of the SNNP regional state. From the 
Bayesian Spatial result, Significant random terms reveal that 
the covariates don’t explain all the variability in the Malaria 
prevalence rate of the woredas of rural area of the region, 
because none of the credible intervals of the variances include 
zero. Overall, The results obtained from the spatial regression 
models are consistent with results of Bayesian Spatial 
analysis. 

4.2. Recommendations 

The following recommendations are forwarded based on 
the findings of this study. The study results suggest that there 
are ’malaria prevalence hot-spots’ in the study area. The 
government and other Health related Non-Governmental 
Organizations should consider these results when planning 
malaria control measures. Awareness giving to people 
regarding the disease and control mechanisms to utilize and 
use these ways for instance, to apply anti mosquito spraying in 
12 months will reduce malaria transmission. The implication 
of the spatial dependence is that, in cases where the decisions 
on how to allocate funds for interventions needs to have 
spatial dimension or woredas with neighborhoods. 

We also recommend to study using recent data including all 
regions in Ethiopia to come up with a broader aspect of 
malaria prevalence. The local risk factors such as temperature, 
rainfall and humidity which might be important in explaining 
local clustering of the disease, are not considered in the 
analysis. 
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