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Abstract: Financial and Economic time series literatures have shown that financial and economic time series data exhibit 

non-linearity in their behavior. In order to be mindful of such behavior as applied to Nigeria inflation rates, this study therefore, 

applies a two stages non-linear self-exciting threshold autoregressive model (SETAR) to Nigeria inflation rates. The results 

obtained for both in-sample and out-of-sample forecast performances for SETAR model were compared with results of linear 

seasonal autoregressive integrated moving average (SARIMA). On the basis of in-sample forecast performance of linear 

SARIMA and non-linear SETAR, using performance measure indices like MAE and RMSE, the results obtained indicated that 

non-linear SETAR model performed better than linear SARIMA. So also for the out-of-sample forecast performance using 

multi-step ahead forecast performance, the results also indicated that non-linear SETAR out performed linear SARIMA. 
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1. Introduction 

It is obvious that linear time series models are too 

restrictive to capture economically interesting asymmetries 

and empirically observed nonlinear dynamics. This has over 

the years being the research focus of academia, investors and 

practitioners. Models that can capture nonlinear dynamics 

have also been the research attraction of time series and 

econometrician statisticians so as to obtain different field 

specific forecast models such as Bilinear models, Random 

Coefficient Models, State Dependent Models SETAR 

models, GARCH models and soon. Vast result has been 

concentrated on describing sunspot and Canadian lynx data 

example of this include but not limited to [11], Granger and 

Terasvirta [12], [9], [8], and references therein. 

Of interest to time series experts and econometricians is 

the behavior of regime switching models whereby the 

parameters of models are made to change depending on the 

occurrence of a particular event, episode or policy (e.g. 

recessions or expansions, periods of low/high stock market 

valuations, low/high interest rates etc) but are otherwise 

constant within regimes. Popular models that can be 

categorized within this group are the well known Markov 

switching models popularized by Hamilton's early work [4] 

and which model parameter change via the use of an 

unobservable discrete time Markov process. This class of 

models in which parameter changes are triggered by an 

unobservable binary variable has been used extensively as an 

intuitive way of capturing policy shifts in Macroeconomic 

models as well as numerous other contexts such as 

forecasting economic growth and dating business cycles. In 

Leeper and Zha [6], Farmer, [8], [7], for instance the authors 

use such models to introduce the concept of monetary policy 

switches and regime specific Taylor rules. Other particularly 

fruitful areas of application of such regime switching 

specifications has involved the dating of Business Cycles, the 
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modelling of time variation in expected returns among 

numerous others (see Hamilton [4], [8] etc.). An alternative, 

parsimonious and dynamically very rich way of modelling 

regime switching behaviour in economic data is to take an 

explicit stand on what might be triggering such switches and 

adopt a piecewise linear setting in which regime switches are 

triggered by an observed variable crossing an unknown 

threshold. Such models have been proposed by Howell Tong 

in the mid 70s and have gone through an important revival 

following their adoption by Economists and Econometricians 

during the 80s and 90s following the methodological work of 

Bruce Hansen (see also Hansen (2011) and references therein 

for a historical overview), [15], [12], [14] and others. When 

each regime is described by an autoregressive process and 

the threshold variable causing the regime change is also a 

lagged value of the variable being modeled we have the well 

known Self Exciting Threshold Auto-Regressive class of 

models (SETAR) extensively studied in the early work of 

[11] and others [12-14]. In general however the threshold 

principle may apply to a wider range of linear univariate or 

multivariate models and need not be solely conned to 

autoregressive functional forms. Similarly the threshold 

variable triggering regime switches may or may not be one of 

the variables included in the linear part of the model. Despite 

their simplicity, such models have been shown to be able to 

capture a very diverse set of dynamics and asymmetries 

particularly relevant to economic data. Important examples 

include the modelling of phenomena such as costly arbitrage 

whereby arbitrage occurs solely after the spread in prices 

exceeds a threshold due for instance to transport costs [6], 

[14], and [16]. It is the intention of this study to compare the 

forecast performance of SETAR and SARIMA models. 

2. Mathematical Specification of the 

Models 

The generalization of well-known Box-jenkins ARIMA 

model to accommodate data with characteristics of both 

season and non-seasonal is called seasonal autoregressive 

integrated moving average (SARIMA) model. ARIMA 

model is the combination of Autoregressive (AR) and 

Moving average (MA) models. The autoregressive part takes 

care of the past information of the series under consideration 

while the moving average aspect takes care of the past error 

of the series [4] and [11]. The ARIMA model with its order is 

usually written as ARIMA ( ), ,p d q  where ,p d  and q  are 

integers greater than or at least equal to zero and refers to the 

order of the autoregressive, integrated and moving average 

parts respectively. Parameter p  refers to number of 

autoregressive lags; the second parameter d  means the other 

of integration that reflects the stationarity of data and q  

refers to the lag in moving average. 

The ARIMA model is written as 

( )( ) ( ) { } ( )21 ,  0,∼

d

t t tL L y L WNφ θ ε ε σ− =  

Where tε , follows a white noise (WN) process. The 

autoregressive operator and moving average operator are as 

defined below; 

( ) 2
1 21 ⋯

p
pL L L Lφ φ φ φ= − − − −  

( ) 2
1 21 ⋯

q
qL L L Lθ θ θ θ= − − − −  

( ) 0Lφ ≠  for 1φ < , the process { }ty  is stationary if and 

only if 0d = , if this happens it reduces to ARMA ( ),p q . 

The generalization of ARMA model to SARIMA model 

occurs when series contains seasonal and non-seasonal 

features. This behavior rendered ARIMA model inefficient to 

be applied to the series with such behavior, because it might 

not be able to adequately account for the seasonal pattern of 

the series and if use may lead to wrong order selection for 

non-season components. The SARIMA model is denoted by 

ARIMA ( ), ,p d q  ( ), ,P D Q s . The lag form of which was 

given by (Halim and Bisomo, 2008) is given below: 

( ) ( )( ) ( ) ( ) ( )1 1
Dds S s

t tL L L L y L Lφ θ εΦ − − = Θ  

( ) 2
1 21 ⋯

p
pL L L Lφ φ φ φ= − − − −  

( ) 2
1 21 ⋯

S S S PS
pL L L LΦ = − Φ − Φ − − Φ  

( ) 2
1 21 ⋯

q
qL L L Lθ θ θ θ= − − − −  

( ) 2
1 21 ⋯

S S S QS
qL L L LΘ = − Θ − Θ − − Θ  

Having established the stationarity condition of data, the 

suitable model can thereafter be determined. The Order of the 

model which , ,  and SMAAR MA SAR  terms follow can be 

determined using ACF  and PACF  plot. ACF  and PACF

has spikes at ks and cut off after lag ks at season level. The 

numbers of significant spikes suggest the order of the model 

as shown in the table below. 

( ) ( )( ) ( ) ( ) ( )1 1
Dds S s

t tL L L L y L Lφ θ εΦ − − = Θ  

( ) 2
1 21 ⋯

p
pL L L Lφ φ φ φ= − − − −  

( ) 2
1 21 ⋯

S S S PS
pL L L LΦ = − Φ − Φ − − Φ  

( ) 2
1 21 ⋯

q
qL L L Lθ θ θ θ= − − − −  

( ) 2
1 21 ⋯

S S S QS
qL L L LΘ = − Θ − Θ − − Θ  

Having established the stationarity condition of data, the 

suitable model can there after be determined. The Order of 

the model which , ,  and SMAAR MA SAR  terms follow can 

be determined using ACF  and PACF  plot. ACF  and 
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PACF has spikes at ks and cut off after lagks at season level. 

The numbers of significant spikes suggest the order of the 

model as shown in the table below. 

2.1. Character Exhibited by ACF  and PACF  for Pure Seasonal ( ),ARMA P Q s  

Table 1. ACF AND PACF FOR PURE SEASONAL ( ),ARMA P Q s . 

 ( )AR P s  ( )MA Q s  ( ),ARMA P Q s  

ACF  Tailsoffatlag ks  1,2,3,⋯k =  Cutsoffafterlag Qs  Tailsoffatlag ks  

PACF  Cutsoffafterlag Ps  Tailsoffatlag ks  1, 2,3,⋯k =  Tailsoffatlag ks  

 

On the other hand the class of the Threshold 

Autoregressive (TAR) model commonly use in literature is 

self-exciting threshold autoregressive (SETAR) model 

proposed by [11] and [12] (Tong 1978, 1983). For instance 

Tong and Yeung [12] for beach water pollution, [15] for 

futures markets, [12] for epidemiological applications, [16] 

for sea surface temperatures, Montgomery et al. For the 

examination of statistical properties and forecasting ability of 

SETAR model check [11], [13], [16], [12] and [14]. The two 

regime version of the SETAR model of order p  as given by 

[17] is as follows; 

( ) ( )

( ) ( )

1

2

1 1 (1)
10

1

2 2 (2)
1 20

1

,  

,  

    .         .          .                 .

    .         .          .                 .

    .         .          .             

p

t j t j t t d

j

p

j t j j t d

j

y Y if y r

Y if r y r

φ φ ε

φ φ ε

− −
=

− −
=

= + + ≤

+ + ≤

∑

∑

( ) ( ) ( )
10

1

    .

,  <
kp

k k k
j t j j h t d

j

Y if r yφ φ ε− − −
=

+ +∑

          (1) 

( ) ( )1 1
 j jandφ φ  are the coefficient of lower and upper regime 

respectively which needs to be determined, r  is the threshold 

value, 
( ) ( )1 2

  p and p  are the order of linear AR model in low 

and high regime respectively. The orders of the AR model in 

both regimes are the same. t dy −  is the threshold variable that 

governs the transition between low and high regimes. 

2.2. Forecast from the Model Used in the Study 

I. SARIMAMODEL 

The forecast equations used in the study is patterned 

towards cryer and Chan 2008. 

( )1 1.2 1.3 1 1.2 1.3t t t t t t t ty y y y ε θε ε θ ε− − − − − −− = Φ − + − − Θ + Θ  

1 1.2 1.3 1 1.2 1.3t t t t t t t ty y y y ε θε ε θ ε− − − − − −= + Φ − Φ + − − Θ + Θ  

The one step ahead forecast from the origin is given by 

1 1.1 1.2 1 1.1 1.2
ˆ

t t t t t t ty y y y θε ε θ ε+ − − − − −= + Φ − Φ − − Θ + Θ  

While the next step is 

2 1 1.0 1.1 1 1.0 1.1
ˆ ˆ

t t t t t t ty y y y θε ε θ ε+ − − − − − −= + Φ − Φ − − Θ + Θ  

And soon. The noise terms are 1.3 1.2 1.1 1.0, , , , ,⋯ iε ε ε ε ε  as 

residuals will fit into forecasts for lead times. 

II. SETARMODEL 

The optimal forecast one step ahead forecast is given by 

Franses and Van Dijk, [16] as follows: 

( )1| 1
ˆ | :t r r t ty E y E F x φ+ +  = Ω =      

Where 1
ˆ

ty +  represents the forecast value for ( )1t + , and 

tΩ is the time history of the series upto time t . ( ):tF x φ  is 

the non-linear function that represent the SETAR model. The 

next optimal forecast is: 

( )2| 1 1
ˆ | : |t r r t t ty E y E F x φ+ + + = Ω = Ω      

Conclusively, the optimal h − step ahead forecast can be 

obtained as: 

( )| 1
ˆ | :t h r r h t t hy E y F x φ+ + + −= Ω =    

2.3 Forecast Comparism 

The forecast used in the study is compared using 

performance measure indices. It should be noted that a model 

with minimum forecast errors compare to other competing 

models. To determine a model that gives the best forecasting 

accuracy, the accuracy of each model can be checked to 

determine the performance of the models for both in-sample 

and out-of-sample forecast. The accuracy of the models are 

compared using performance measure indices such as mean 

square error (MSE), mean absolute error (MAE), mean 

absolute precision error (MAPE) and Theil’s u inequality 

coefficient (TIC). 

I. MEAN SQUARE ERROR (MSE) 

( )1

1

ˆ  

T

t t

t

MSE N Y Y−

=

= −∑  

II. MEAN ABSOLUTE ERROR (MAE) 

1

1

ˆ
T

t t

t

MAE N Y Y−

=

= −∑  
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III. MEAN ABSOLUTE PRECISION ERROR (MAPE) 

1

1

ˆ
 100

T
t t

tt

Y Y
MAPE N X

Y

−

=

−
= ∑  

IV. THEIL’SUINEQUALITY COEFFICIENT 

2

1

2 2

1 1

1
( )

1 1
( ) ( )

n
s a

t t

t

n n
s a

t t

t t

Y Y
n

U

Y Y
n n

=

= =

−

=

+

∑

∑ ∑

 

V. BIAS 

2

2

1

( )

1
( )

s a

M

n
s a

t t

t

Y Y
U

Y Y
n =

−=
−∑

 

VI. VARIANCE 

2

2

1

( )

1
( )

S s a

n
s a

t t

t

U

Y Y
n

σ σ

=

−
=

−∑
 

VII. COVARIANCE 

2

1

2(1 )

1
( )

C s a

n
s a

t t

t

U

Y Y
n

ρ σ σ

=

−
=

−∑
 

3. Empirical Illustration with Nigerian 

Inflation Rates Data 

The inflation rate data of Nigeria was obtained from the 

Consumer Price Index of Nigeria Bureau of Statistics from 

1993 to 2013. The data covers. All methodologies used were 

applied to the data. We used E-view and R code for the data 

analysis. 

3.1. Descriptive Statistics 

To assess the distributional properties of the series under 

study, various descriptive statistics are shown below in the 

figure 1 below: 

 

Figure 1. Histogram and descriptive statistics of the series. 

The standard deviation is very high, indicating high level 

of fluctuations in the series, so also the presence of positive 

skewness with long right tail, showing that the series is non-

symmetric. The histogram of the series shows that it is non-

normal (leptokurtic). 

3.2. Stationarity Test and Model Identification 

Two measures were used to determine the stationarity status 

of the series under study, they are graphical and unit root 

methods. In the graphical method stationarity was not achieve 

at level and at the first difference (figures 2 and 3), however, 

this was achieve at second difference (as shown in figures 4). 

So also unit root conducted using Augmented Dickey fuller’s 

test revealed that at level and first difference the series was not 

stationary (Tables 2 and 3), but at second difference 

stationarity condition was achieved (as shown in table 4): 

 

Figure 2. Line Graph of Level of Nigeria’s Inflation Rates. 
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Figure 3. Line Graph of First Difference of Nigeria’s Inflation Rates. 

 

Figure 4. Line Graph of Second Difference of Nigeria’s Inflation Rates. 

Table 2. Unit root test output for the level of the series. 

Series 
ADF-Test 

statistic 

Critical value 

(5%) 

Mackinnon 

prob •  

NIG. INFLATION RATE -2.6645 -2.8729 0.0817 

Table 3. Unit root test output for the first difference of the series. 

Series 
ADF-Test 

statistic 

Critical value 

(5%) 

Mackinnon 

prob •  

NIG. INFLATION RATE -2.5667 -2.8729 0.1014 

Table 4. Unit root test output for the second difference of the series. 

Series 
ADF-Test 

statistic 

Critical 

value (5%) 

Mackinnon 

prob •  

NIG. INFLATION RATE -8.1872 -2.8729 0.0000 

Table 5. Unit root test output for the second difference of the series. 

Series 
ADF-Test 

statistic 

Critical 

value (5%) 

Mackinnon 

prob •  

NIG. INFLATIONRATE -8.1872 -2.8729 0.0000 

FORECAST PERFORMANCE MEASURES INDICES 

Using all indices as discussed in the mathematical 

preliminaries, the following tables were generated from the 

analysis. Both in-sample and out-of sample forecast 

performances of the series for both season autoregressive 

integrated moving average (SARIMA) and self exciting 

transition autoregressive (SETAR) models. The results 

obtained show that in each case (in-and out-of sample) 

SETAR model actually out-performed SARIMA model. 

Table 6. In-sample forecast performances. 

INDICES SARIMA SETAR 

RMSE  18.75116 1.92342 

MAE  14.15307 1.52261 

MAPE  120.60480 22.52000 

'THEIL SU  0.38616 0.12650 

BIAS  0.000003 0.000002 

.VAR  0.97294 0.98213 

.COV  0.0106 0.00533 

Table 7. Out-of sample forecast performances. 

INDICES SARIMA SETAR 

RMSE  1.14573 0.32123 

MAE  0.8I662 0.21800 

MAPE  57.63100 9.8312 

'THEIL SU  0.20880 0.00146 

BIAS  0.000001 0.000001 

.VAR  0.98176 0.99234 

.COV  0.018241 0.00001 

4. Conclusion 

This paper focuses on building a model for Nigerian 

inflation rates using a season autoregressive integrated 

moving average (SARIMA) model and Self exciting 

transition autoregressive (SETEAR) model. We used monthly 

data of Nigerian inflation rates from 1991 to 2012. 

Stationarity of the series was established using both graphical 

Augmented-Dickey fuller test, at level and first difference the 

series was not stationary, but at second difference it was 

stationary. We thereafter use performance measure indices o 

evaluate both the in-sample and out-of sample forecast 

performances which show that SETAR model has a better 

performances in term of both in and out of sample forecast 

performance. 
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