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Abstract: The problem of determining the first-passage times to a moving barrier for diffusion and other Markov processes 

arises in biological modeling, population growth, statistics, engineering, etc. Since the development of mathematical models 

for population growth of great importance in many fields. Therefore, the growth and decline of real populations can, in many 

cases, be well approximated by the solutions of stochastic differential equations. However, there are many solutions in which 

the essentially random nature of population growth should be taken into account. This paper focusses in approximating the 

moments of the first – passage time for the general diffusion process to a general moving barrier. This was done by 

approximating the differential equations by equivalent difference equations. 

Keywords: First Passage Time, General Diffusion Process, Difference Equations, General Moving Barrier 

 

1. Introduction 

A first passage time in a stochastic system, is the time 

taken for a state variable to reach a certain value. The idea 

that a first passage time of a stochastic process might 

describe the time to occurrence of an event has a long history, 

starting with an interest in the first passage time of Wiener 

diffusion processes in economics and then in physics in the 

early 1900s. Modeling the probability of financial ruin as a 

first passage time was an early application in the field of 

insurance. Historically, an interest in the mathematical 

properties of first-passage times and statistical models and 

methods for analysis of survival data appeared steadily 

between the middle and end of the 20th century. 

Therefore, first – passage time play an important role in 

the area of applied probability theory especially in stochastic 

modeling. Several examples of such problems are the 

extinction time of a branching process, or the cycle lengths of 

a certain vehicle actuated traffic signals. Actually the first – 

passage times to a moving barriers for diffusion and other 

markov processes arises in biological modeling (Cf. Ewens 

[1]), in statistics (Cf. Darling and Siegert [2] and Durbin [3]). 

Different authors have been studied many important 

results related to the first – passage time from different points 

of view. For example, McNeil [4] has derived the distribution 

of the integral functional, where is the first – passage time to 

the origin in a general birth – death process with X (0) = x 

and g (.) is an arbitrary function. Also, a number of classical 

birth and death processes upon taking diffusion limits to 

asymptotically approach the Ornstein – Uhlenbeck (O. U.) 

have been shown by Iglehart [5], McNeil and Schach [6]. 

Moreover, many properties such as the first – passage time 

to a barrier, absorbing or reflecting, located some distance 

from an initial starting point of the O. U. process and the 

related diffusion process such as the case of the first passage 

time of a Wiener process to a linear barrier is a closed form 

expression for the density available is discussed in Cox and 

Miller [7]. Also, others such as, Karlin and Taylor [8], 

Thomas [9], Ferebee [10], Tuckwell and Wan [11], Alawneh 

and A-Eideh [12], Al-Eideh [13-15], etc. have been discussed 

the first passage time from different points of view. 

In particular, Thomas [9] describes some mean first – 

passage time approximation for the Ornstein – Uhlenbeck 

process. Tuckwell and Wan [11] have studied the first-

passage time of a Markov process to a moving barrier as a 

first-exit time for a vector whose components include the 

process and the barrier. 

Alawneh and A-Eideh [12], describes some mean first-

passage time approximation for the Ornstien-Uhlenbeck 

process with a single absorbing barrier using the method of 
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approximating the differential equations by difference 

equations. 

Al-Eideh [13], has discussed the problem of finding the 

moments of the first passage time distribution for the birth-

death diffusion to a moving linear barrier using the same 

method of approximating the differential equations by 

difference equations. Furthermore, in [15], he considered the 

case of birth-death diffusion with immigrations to a moving 

linear barrier. 

In addition, Al-Eideh [14], has discussed the problem of 

finding the moments of the first passage time distribution for 

the Wright-Fisher diffusion processes to a single absorbing 

barrier using the method of approximating the differential 

equations by difference equations, too. 

In this paper, we consider the general diffusion process and 

study the first – passage time for such a process to a general 

moving barrier. More specifically, the moment 

approximations are derived using the method of difference 

equations. Note that the same lines as in Al-Eideh [15] will 

be followed but the derivations, the generalizations are not 

straightforward, and the results are very different. 

2. Moment Approximations for the  

First – Passage Time 

This section will be devoted to derive the moment 

approximation for the first passage time for a general 

diffusion process to a general linear barrier. 

Suppose that { }0: ≥tX t be the general diffusion Process 

with infinitesimal mean )(xµ  and variance )(2 xσ  starting 

at some 00 >x . Also, { }0: ≥tX t  is a Markov process with 

state space [ )∞= ,0S  and satisfies the Ito stochastic 

differential equation 

tttt dW)X(dt)X(dX σ+µ=                    (1) 

Here { }0: ≥tW t
is a standard Wiener process with mean 

zero and variance t. The existence and uniqueness conditions 

are assumed to be satisfied (Cf. Gikman and Skorohod [16]). 

Let { }0:)( ≥ttY be a general moving barrier equation such 

that )()( thtY = , with )0()0( hY = . Or equivalently 

)t(h
dt

)t(dY ′=  

Assume the random variables yT  denotes the first – 

passage time of a process 
tX to a general moving barrier 

)()( thtY =  such that 

)}t(hX:tinf{T tY ≥≥= 0                (2) 

Now, letting p ( 0x , x; t) is the probability density function 

of Xt conditional on Xt = 0x , then the probability density 

function of yT  can be written as 

g (t; 0x ) = - 
dt

d
 ∫

∞−

)t(h

p ( 0x , x ;t ) dx 

Suppose that the n-th moment of the first – passage time 

YT  be ( )t;Y,xM n 0
; n = 1, 2, 3,……,, then 

( ) )T(Et;Y,xM n
Yn =0

; n = 1, 2, 3,…,               (3) 

Using the forward Kolmogorov equation, it follows that 

the n-th moment of 
YT  must satisfy the ordinary differential 

equation 

( ) ( )
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Or equivalently 
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Note that here ( )t;Y,xM n 0′  and ( )t;Y,xMn 0′′  are the first 

and the second derivatives of ( )t;Y,xM n 0
 with respect to 

x  and appropriate boundary conditions for n=1, 2, 3,… 

besides ( ) 100 =t;YxM ,
 where Yxx ≤≤0

. 

Rewriting equation (5), we get 
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By letting ∆  to be the difference operator, then the first 

order difference equation of ( )tYxM n ;,0
 will be defined as 

(Cf. Kelley and Peterson [17]): 

( ) ( ) ( )t;Y,xMt;Y,xMt;Y,xM nnn 0010 −=∆ +        (7) 

Now approximating the equation in (6), we find that 

( ) ( )

( )t;Y,xM
)x(

)t(h

)x(

)x(

t;Y,xM
)x(

n
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Using equation (7), then equation (8) can be rewritten as 

follows: 
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Now, by letting 

( ) ( ) ( )[ ]′= ⋯
�

,t;Y,xM,t;Y,xMt;Y,xM 02010  

and using the matrix theory to solve the differential equation 

defined in equation (9), we get 
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Also, letting 
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dx
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Consequently, this imply 
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Now, by applying to equation (10), we obtain 
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Where 0 is the zero matrix and I is the identity matrix. 

Therefore, the solution of the system of equation in (13) is 

then given explicitly by: 
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Where D  = [
ijd ]; 1, ≥ji  is the diagonal matrix with 

entries 
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Note that by Taylor expansion, the matrix 
Be  where 
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Moreover, according to Zeifman [18] and since it is a 

Cauchy operator of equation (2.6), this series is convergent. 

3. Applications 

In this section, we will introduce some applications of 

finding the first passage time moments approximations for 

some diffusion processes to a linear moving barrier, where 



170 Basel Mohammad Said Al-Eideh:  First–Passage Time Moment Approximation for the General Diffusion   

Process to a General Moving Barrier 

kcttY +=)( , with kY =)0( . Or equivalently 

c
dt

)t(dY =  

Note that the first – passage time of a process 
tX  in (2) 

becomes }kctX:tinf{T tY +≥≥= 0 . 

3.1. The Write-Fisher Diffusion Model for Gene Frequency 

Consider the simplest Write-Fisher diffusion model for 

depicting fluctuations of gene frequency of the A-type within 

a population having both A-and a-types subject to selection 

influences with the state space ],[ 10  and diffusion 

coefficients 

( ) ( )xxx −σ=µ 1  and ( ) ( )xxx −=σ 12  

Thus, the first – passage time moments is given explicitly 

by solving (14) with D  = [
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3.2. The Bessel Process 

The Bessel process ( ){ }tX  of parameter 0≥α is the one-dimensional diffusion process on ),[ ∞0 having the 

infinitesimal coefficients 
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x
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2
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With explicit transition density given by 
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Where ( )zIv  is the modified Bessel function 

( ) ( )
( )∑

∞

=

+

++Γ
=

0

2

1

2

k

vk

v
vk!k

/z
zI . 

Thus, the first – passage time moments is given explicitly by solving (14) with D  = [
ijd ]; 1, ≥ji  is the diagonal matrix 

with entries 
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Otherwise ;            0    
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

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dij  

And [ ] 1≥= ∗∗ j,i;aA ij
 is the matrix with entries 
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3.3. The Jacobi Diffusion Process 

The Jacobi diffusion process ( ){ }tX  of positive parameter α and β is the one-dimensional diffusion process on 

),(I 11−=
 
where the boundaries -1 and 1 are the entrance boundaries and having the infinitesimal coefficients 
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4. Conclusion 

In conclusion, the system of the solutions in equation 

(14) gives an explicit solution to the first – passage time 

moments for the general diffusion process to a general 

moving barrier. Therefore, this technique is very beneficial 

in using the difference equation to approximate the ordinary 

differential equation since it is the discretization of the 

ODE. In addition, this general explicit solution can capture 

all cases of diffusion processes with known infinitesimal 

coefficients to any functional form of moving barrier. In 

general, this increases the applicability of diffusion 

processes in all area of applied probability theory, 

especially, in stochastic modeling.  
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