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Abstract: In this paper, a class of double sampling difference cum ratio - type estimator using two auxiliary variables was 

proposed for estimating the finite population mean of the variable of interest. The expression for the bias and the mean square 

error of the proposed estimators are derived; in addition, some members of the class of the estimator are identified. The 

conditions under which the proposed estimators perform better than the sample mean and the existing double sampling ratio 

type estimators are derived. The empirical analysis showed that the proposed class of estimator performs better than the 

existing estimators considered in this study. 
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1. Introduction 

Proper use of auxiliary variable is always known to improve 

the performance of estimators. Ratio, product and regression 

estimators are the most common and widely discussed in 

sampling theory literature. Ratio and product estimators are not 

as efficient as regression estimator except when the regression 

line passes through the origin. In real life situations, the line 

does not pass through the origin. This limitation has made 

many authors to provide alternatives to get better estimates. 

Authors like Kadilar and Cingi, [1, 2], Raja et al., [3], Sisodia 

and Dwivedi, [4], Singh and Kakran, [5], Singh and Tailor, [6], 

Subramani and Kumarapandiyan, [7], Upadhyaya and Singh, 

[8] and Yan and Tian [10] have modified the classical ratio 

estimator by Cochran [10]using some known population 

parameters like coefficient of variation, coefficient of 

skewness e.t.c. , of an auxiliary variable when the population 

mean of the auxiliary variable is known. 

Sometimes it has been observed in sample surveys that 

information may be available on more than one auxiliary 

variable. Some authors like Kadilar and Cingi, [11], Mohanty, 

[12], Olkin, [13], Singh, [14] and Swain, [15], have worked on 

the use of two auxiliary variables in the estimation of the 

population mean of the variable interest. In their work, they 

assumed that the population means of the two auxiliary variables 

are known. In real practical survey situation, the population 

means of the two auxiliary variables may not be available. In 

this condition it is customary to use two phase sampling or 

double sampling scheme for estimating the population means of 

the auxiliary variables, see Cochran [10]. In the literature, 

several authorshave proposed different estimatorsin double 

sampling for estimating the finite population mean of the study 

variable using two auxiliary variables. Authors like Mohanty, 

[12], Mukerjee et al., [16] and Muhammad et al., [17], suggested 

some estimators with an assumption that the population means 

of the two auxiliary variables are unknown. 

Mohanty suggested regression ratio estimator indouble 

sampling (���) using two auxiliary variables x and z, [12]. 

Which is given by 

ˆ ( )M yx

z
T y b x x

z

′
 ′= + −                          (1) 

While Mukerjee et al, [16], suggested regression type 

estimator in double sampling of the form: 
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( )ˆ ( )MRV yx yzT y b x x b z z′ ′= + − + −                (2) 

Muhammad et al. [17] also proposedregression type 

estimators by adopting Mohanty’s,[12] and Mukerjee et al, 

[16] estimators. The estimator is given by  

ˆ ( ) (1 )MNM yx

z z
T y b x x

z z
θ θ

′  ′= + − + −   ′ 
            (3) 

where θ is suitably chosen constant. x′ , z′ are sample means 

based on the first phase sample; , ,  zy x are sample means 

based on the subsample.  

���(sample	regression	coefficient	of	y	on	x) , ��� , 

(sample regression coefficient of x on z) 

However, these authors did not consider the use of 

population parameters of any of the auxiliary variables like 

coefficient of variation, coefficient of skewness, decilese.t.c. to 

improve on the efficiency of the estimators. In this study, a 

class of difference cum ratio-type estimator in double sampling 

was proposed. Some known population parameters of one of 

the auxiliary variables were used to construct the estimator. 

2. The Proposed Class of Ratio Estimator 

Using Two Auxiliary Variables in 

Double Sampling 

Consider a finite population U ={ }1 2, , ... Nu u u  of size N. 

Let Y bethe study variable andX, Zbe the two auxiliary 

variables, taking values(yi, xi, zi) on the i
th

 unit of the 

population. Let (��, ��	, �̅) be the population means of (y, x, z), 

respectively. Suppose the population means of the auxiliary 

variables are unknown. In such a situation we use a two 

phase sampling. A preliminary large sample ( n′ )is selected 

using simple random sampling from N;information of the 

auxiliary variables are obtained from the sample. Information 

on the variable of interest (y) is collected from a second 

random sampleof size n is selected from the first phase 

sample (n <n′).  

2.1. The Proposed Class of Estimator 

Following Kadilar and Cingi, [1, 2] and Tripathi et al., [18], 

the proposed estimator is of the form: 

( )1*

2

( )
ˆ

( )
dp

y t x x Ax G
T

Ax G t z z

αγ γ

αγ γ

 ′ ′− − + =
 ′+ − − 

                   (4) 

A and G are assumed known function of the auxiliary 

variable X such as coefficient of kurtosis (β"(#)), coefficient 

of skewness(β$(#)), coefficient of variation (C#	), deciles (first 

decile, D$(#),second	decile, D"(#), …, tenth decile), correlation 

coefficient between X and Y	(ρ#*). Also0 < - ≤ 1,t$and t" 

are unknown constants. The scalar α takes values -1, (for 

product-type estimator) and + 1 (for ratio-type estimator). 

2.2. Derivation of the Bias and Mean Square Error of the 

Proposed Estimator
*ˆ
dpT  

To obtain the Bias and MSE of ��12
∗ , up to the first order of 

approximation, let us define 

(1 ),   (1 ) ,   (1 ) ,   (1 )x x x zx X x X x X z Z
γ γγ γ   ′ ′ ′ ′ ′ ′= + ∆ = + ∆ = + ∆ = + ∆   

 

 (1 )xx Xγ γ γ= + ∆ , (1 )zz Zγ γ γ= + ∆ , (1 )yy Y= + ∆  

Expressing the proposed estimator ��12
∗  in terms of ∆′swe have 

1
*

2

(1 ) (1 )  (1 )
ˆ

(1 ) (1 ) (1 )

Y X X X

dp

X Z Z

Y Y t X X AX G
T

AX G t Z Z

αγ γ γ γ

αγ γ γ γ

    ′ ′+ ∆ − + ∆ − + ∆ + ∆ +   =
  ′+ ∆ + − + ∆ − + ∆  

                                      (5) 

Expanding (5) to the first order of approximation using binomial series expansion, stopping at order 2, we have 

2 2
* 1 1 1 1

1 1 1 1

2 2
2 2 2 2 2 2

1 1 1 1

2
2 2 1 2 1 2 1 2 1 2 2 2

( 1) ( 1)ˆ
2 2

( 1)

2

X X
dp Y X X X X Y

X Z
X X Y X X X X

Z Y X Z X Z X Z

t q t q
T Y Y t q t q Y Y

Y t q Y
Y Y t q t q Y

K

t q Y t t q q t t q q t q Y

K K K K

γ γ αλ αλ

α α λ ααλ αλ αλ αλ α λ

α α α α λ

′− ∆ − ∆′ ′ ′= + ∆ − ∆ − + ∆ + + ∆ + ∆ ∆

′− ∆ ∆′ ′+ − ∆ − ∆ ∆ + ∆ − ∆ − ∆ ∆ +

′ ′∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
+ − + +

2
2 2 2 2 2 2 1 2 1 2 1 2 1 2

2 2 2 2 2 2 2
2 2 2 2 2 2

2

2 2 2
2 2 2 2 2 2

2

( 1)

2

( 1) ( 1) ( 1)

2 2 2

( 1) ( 1) ( 1)

2

Z Z Z Y X Z X Z

X Z Z X Z

Z X Z X Z

t q Y t q Y t q Y t t q q t t q q

K K K K K

t q Y t q Y Y t q Y

K K K

t q Y t q Y t q Y

K KK

α γ α α α α

α λ α γ α α λ α α

α α α α λ α α λ

′ ′ ′ ′ ′− ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆
+ − − + − −

′ ′ ′∆ ∆ − ∆ + ∆ + ∆
− + + +

′ ′+ ∆ + ∆ ∆ + ∆ ∆
− +

2 2 2
2 2

2

( 1) Zt q Y

K

α α ′+ ∆
−

                        (6) 
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1 2,  ,q X q Zγ γγ γ= = K AX G= + ,   
AX

AX G
λ =

+
 

Taking expectation of (6) and using the results: 

E7∆�8 = 	E(∆:) = E(∆;< ) = E(∆:< ) = E(∆;) = 	0 

=(∆>") = ?$@>", =(∆:") = ?$@:", =(∆�") = ?$@;" , =7∆:<
A
8 = =(∆:∆:< ) = ?"@:" 

=7∆;<
A
8 = ?"@;",=(∆:>< ) = ?"B��@:@>, =(∆:< ∆;) = ?"B:;@:@; 

=(∆:∆;) = ?$B:;@:@; , =(∆;< ∆>) = ?"B;>@;@>,=(∆�∆>) = ?$B;>@;@> 

1 2

1 1 1 1
,  

n N n N
ω ω= − = −

′
, 3

1 1

n n
ω = −

′
 

After simplification, the bias is 

*ˆB( )dpT =
*ˆ( )dpE T Y− =

2 2 2
2 221 1

1 1

3 2 2 2 2
1 2 1 2 2 22 2 2 2

2

( 1) ( 1)

2 2

( 1)( 1) ( 1)

2 2

zy z yx x
xy x y x

xz x z xz x zz z

t q Y C Ct q C YC
Y C C t q C

K

t t q q C C t q Y C Ct q YC t q YC

K K KK

α ργ α α λαλ ρ αλ
ω

α ρ α α λ ρα γ α α

 − +− − + + + − 
 
 +− ++ + − 
 

        (7) 

The mean square error of this estimator is 

* * 2ˆ ˆ( ) ( )dp dpMSE T E T Y= −
 

Which from (6) and ignoring order higher than 2 and after simplification we have 

2 2 2 2 2
* 2 2 2 2 2 2 2 2 2 2 2

1 3 1 1 1 12

2 2 2
2 22 2 1 2 1 2 2 2

1 1

ˆ MSE( ) [ 2{

}]

z
dp y x x xy x y

zy z y xz x z xz x z
xy x y x

t q Y C
T Y C t q C Y C t q Y C C

K

t q Y C C t t q q Y C C t q Y C C
Y C C t q YC

K K K

αω ω α λ ρ

α ρ α ρ α λ ραλ ρ αλ

= + + + −

+ − − + +

                     (8) 

In order to obtain the optimum values of 1t and 2t we differentiate (8) simultaneously with respect to 1t and 2t and solve the 

resultant equations. This gives 

0

2

1
1 2

1

( ) (1 )

(1 )

y xy xz zy x xz

x xz

YC YC l
t Y

qX Cγ
ρ ρ ρ αλ ρ αλ

γ ρ
− − −  −= =  −  

 

( )
0

2
2 2

2

( )
          

(1 )

y zy xy xz

z xz

C AX G l K
t

qZ Cγ

ρ ρ ρ
ααγ ρ

− +
= − = −

−
 

Where 1 2

( )
 and 

(1 )

y xy xz zy

x xz

YC
l

C

ρ ρ ρ
ρ

−
=

−
2 2

( )

(1 )

y zy xy xz

z xz

C
l

C

ρ ρ ρ
ρ

−
=

−
 

Substituting the optimum values 1 2 and 
o o

t t in (8) we obtain the minimum mean square error 

* 2 2 2 2 2 2
1 3 1 2 1 2 1 2

ˆMSE( ) [ { 2( )}]dp opt y x z xy x y zy z y xz x zT Y C l C l C l C C l C C l l C Cω ω ρ ρ ρ= + + − + −                         (9) 

3. Sub-members of the Proposed Class of 

Ratio-type Estimator 

Setting 1 2, , ,t t α γ , A and G to specific values in (4), some 

estimators which can be regarded as members of this 

proposed estimator can be obtained. For instance, if 

1 0t α= =  we have the usual sample mean estimator. 

Also setting 

C$ = ��� =
DEF
DE
A (sample	regression	coefficient	of	y	on	x) , C" =

��� =
DEG
DG
A ,(sample regression coeffcient of x on z), where 2

xs  
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and 2
zs  are thesample variances of x and z respectively, xys

and xzs  are the sample covariances between x and y and 

between x and z, respectively and H = 1	(ratio estimator), we 

have a member of the class of ratio-type regression estimator 

for estimating the population mean using two auxiliary 

variables when the population mean of two auxiliary 

variables are unknown presented below.  

( )
*

( )
ˆ

( )

xy

dp

xz

y b x x Ax G
T

Ax G b z z

γ γ

β γ γ

 ′ ′− − +
 =
 ′+ − −
 

,	0 < - ≤ 1     (10) 

Using the large sample approximation as used in the case 

of the regression estimation of the population mean, where 
2 tends to xy xy xy xb S Sβ = and 2 tends to xz xz xz zb S Sβ = , 

the bias and mean square error, from (7) and (8) are as 

follows: 

1 1 2 2* 2 2
3 1 1

2 2 2 2 2 2 2
1 2 2 2 2 2 2 2 2

2

( 1)
ˆB( ) [

2
( 1) 2

]                         
2

xy x y xz zy x y
dp xy x y x xy x y

xy xz x y xz x z xz x xz x

q R Y C C q R Y C C
T Y C C YC q R C C

K
q q R Y C C q R Y C C q R Y C q R Y C

K K KK

β
γ ρ ρ ρ

ω λ ρ λ λ ρ

ρ ρ γ ρ ρ λ ρ

−
= − − + + +

−− + + −                      (11) 

2 2 2 2 2
* 2 2 2 2 2 2 2 2 2 2 22 2

1 3 1 1 1 12

2 2 2 2
2 2 1 2 1 22 2 2

1 1

ˆMSE( ) [ 2{

}]

xz z
dp y xy y x xy y

xz zy y xy xz x y xz x
xy x y xy x y

R q Y C
T Y C R q C Y C R q Y C

K

R q Y C C R R q q Y C C R q Y CxY C C R q Y C C
K K K

β
ρω ω ρ λ ρ

ρ ρ ρ ρ λ ρλ ρ λ ρ

= + + + −

+ − − + +

                  (12) 

Where 1 2,   R Y X R X Z= = . If weset 1 1 3 4 2 2 and qR q q R q K= = , equation (12) becomes 

* 2 2 2 2 2 2 2 2 2 2 2 2 2 2
1 3 3 4 3
2 2 2 2 2

4 3 3 4 4

ˆ         MSE( ) [ 2{

                        }] 

dp y xy y x xz z xy y

xy x y xz zy y xy x y xy xz x y xz x

T Y C q C Y C q Y C q Y C

Y C C q Y C C q Y C C q q Y C C q Y C
x

β ω ω ρ λ ρ ρ
λ ρ ρ ρ λ ρ ρ ρ λ ρ
= + + + −

+ − − + +
                      (13) 

Estimators in this class of ratio type regression estimator 

are found in Table 1. 

4. Theoretical Comparison of the 

Proposed Estimator with Other 

Existing Estimators Discussed 

In this section, the performance of the proposed estimator 

with other existing estimators were compared, through their 

mean square errors, like the sample mean, 0T̂ y= , with 

variance 
2 2

0 1
ˆ( ) yV T Y Cω= , the estimator ˆ

MT by Mohanty, [12] 

found in (1); the estimators ˆ
MRVT by Mukerjee, [16] found in 

(2) and the estimator ˆ
MNMT by Muhammad[17] found in (3). 

The mean square errors of these existing estimators are: 

2 2 2 2 2 2 2 2
1 3

ˆ( ) { ( ( ) ( ) }M y xz z xy y xz z z yz y y yzMSE T Y C C C C C C Cω ω ρ ρ ρ ρ ρ= + − − + − −                                      (14) 

2 2 2 2
1 3

ˆ( ) { ( 2 )}MRV y xy yz xy xz yzMSE T Y C ω ω ρ ρ ρ ρ ρ= − + −                                                   (15) 

and

 
2 2 2 2

1 3
ˆ( ) { ( ( ) )}MNM y xy yz xy xzMSE T Y C ω ω ρ ρ ρ ρ= − + −                                                (16) 

The performance of the proposed estimator using the minimum MSE in (9) and MSE of the existing estimators presented in 

(14), (15) and (16). 

The proposed estimator
*ˆ
dpT  is better, in terms of having smaller MSE, than the sample mean if and only if from (9) 

*ˆ ˆ( ) ( )dp opt oMSE T V T≤ iff 

2 2 2 2
1 2 1 2 1 22( )x z xy x y zy z y xz x zl C l C l C C l C C l l C Cρ ρ ρ+ ≤ + −  

From (9) and (14), the proposed estimator 
*ˆ
dpT will perform better than Mohanty estimator ˆ

MT , [12]. 

iff
*ˆ ˆ( ) ( )dp opt MMSE T MSE T≤ this boils down to the condition 
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2 2 2 2 2 2 2 2 2 2
1 2 1 2 1 2 32( ) ( ( ) ( )x z xy x y zy z y xz x z xz z xy y xz z z yz y y yzl C l C l C C l C C l l C C C C C C C Cρ ρ ρ ω ρ ρ ρ ρ ρ+ − + − ≤ − − + − −  

The proposed estimator 
*ˆ
dpT  will be more efficient than the existing estimator ˆ

MRVT by Mukerjee et al., [16]. Using (9) and 

(15),
*ˆ ˆ( ) ( )dp opt MRVMSE T MSE T≤  

iff 

2 2 2 2 2 2
1 2 1 2 1 22( ) ( 2 )x z xy x y zy z y xz x z xy yz xy xz yzl C l C l C C l C C l l C Cρ ρ ρ ρ ρ ρ ρ ρ+ − + − ≤ − + −  

From (9) and (16) the proposed estimator
*ˆ
dpT will be better than the existing estimator ˆ

MNMT  by Muhammad et al., [17] 

iff
*ˆ ˆ( ) ( )dp opt MNMMSE T MSE T≤  

which is equivalent to 

2 2 2 2 2 2
1 2 1 2 1 22( ) ( ( ) )x z xy x y zy z y xz x z xy yz xy xzl C l C l C C l C C l l C Cρ ρ ρ ρ ρ ρ ρ+ − + − ≤ − + −

 

Now comparing these estimators 
*ˆ
dpT  and

*ˆ
dpT β using (9) and (13), estimator

*ˆ
dpT  will be more efficient than 

*ˆ
dpT β iff 

{ }
( ) { } { }

2 2 2 2 2 2 2 2 2 2
1 4 2 4 3

2 2 2
3 1 3 4 4 2 1 2

( ) ( ) 2

 2 ( ) 2

xz x xz z xy y

xy y x xy x y zy x y zy z y xz x z

Y l q C l q C Yq C

q C YC C C Y l Yq q Y q C C l C C l l C C

λρ ρ ρ

ρ λ ρ λ ρ ρ ρ

+ + − +

≤ + − − + + + −
 

5. Empirical Comparison 

In this section, the mean square errors, and percent relative 

efficiencies (PREs) of the existing and the proposed 

estimators with respect to the sample mean ˆ
oT  were 

computed. The results are given in Tables 2 and 3. Real life 

data set by Chattefuee and Hadi,[19] and details of the data 

are as shown below: 

Y-Per capita expenditure on education in 1975 

�- Per capita income in 1973 

� −  Number of residents per thousand living in urban 

areas in 1970 

J = 50	L< = 35	L = 15	�� = 284.0612	�� = 4675.12	�̅ = 657.8  

B�� = 0.60679	B�� = 0.31675	B�� = 0.61937	U� = 733.1407��� = 0.058228 

��� = 2.764116��� = 0.13756	@� = 0.21776	@� = 0.13786	@� = 0.2204 

V$(�) = 3817	V"(�) = 3967	VW(�) = 4243	VX(�) = 4504	VY(�) = 4697  

VZ(�) = 4827	V[(�) = 4989	V\(�) = 5309	V](�) = 5560	V$^ = 5889  

_" = −0.94843	_$ = 0.05675 

The Percent Relative Efficiencies (PREs) of the existing 

estimators mentioned in (1), (2)and (3) and the jth members 

of the proposed estimators
*ˆ

jdpT β , j=1, 2, 3,…, 20 given in 

Table 1and
*ˆ
dpT (for minimum variance in (9)) with respect to 

the usual sample mean��̀ , is of the form; 

PRE =
abc(def)

�gh(.)
∗ 100where (.) = ˆ

MT  or ˆ
MRVT or ˆ

MNMT or the 

proposed estimator. 

The higher the percent relative efficiencies, the more 

efficient the estimator. 

Table 1. Members of the proposed class of double sampling ratio estimator using two auxiliary variables. 

S/No Members of the proposed Class of ratio-type estimator	i < j ≤ k l m 

1 *
1

( )
ˆ

( )

xy
dp

xz

y b x x
T x

x b z z

γ γ

β γ γ
′− −

′=
′− −

 1 0 

2 *
2

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x C

x C b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 xC  
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S/No Members of the proposed Class of ratio-type estimator	i < j ≤ k l m 

3 
*

3 2( )
2( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x

x b z z

γ γ

β γ γ β
β

′− −
′= +

′+ − −
 1 2( )xβ  

4 
*

4 2( )
2( )

( )
ˆ ( )

( )

xy
dp x x

x x xz

y b x x
T x C

x C b z z

γ γ

β γ γ β
β

′− −
′= +

′+ − −
 2( )xβ  xC  

5 
*

5 2( )
2( )

( )
ˆ ( )

( )

xy
dp x x

x x xz

y b x x
T x C

xC b z z

γ γ

β γ γ β
β

′− −
′= +

′+ − −
 @� _"(�) 

6 
*

6

( )
ˆ ( )

( )

xy
dp xy

xy xz

y b x x
T x

x b z z

γ γ

β γ γ ρ
ρ

′− −
′= +

′+ − −
 1 xyρ  

7 
*

7

( )
ˆ ( )

( )

xy
dp x xy

x xy xz

y b x x
T x C

xC b z z

γ γ

β γ γ ρ
ρ

′− −
′= +

′+ − −
 xC  xyρ  

8 
*

8

( )
ˆ ( )

( )

xy
dp xy x

xy x xz

y b x x
T x C

x C b z z

γ γ

β γ γ ρ
ρ

′− −
′= +

′+ − −
 B�� @� 

9 
*

9 2( )
2( )

( )
ˆ ( )

( )

xy
dp x xy

x xy xz

y b x x
T x

x b z z

γ γ

β γ γ β ρ
β ρ

′− −
′= +

′+ − −
 _"(�) B�� 

10 
*

10 2( )
2( )

( )
ˆ ( )

( )

xy
dp xy x

xy x xz

y b x x
T x

x b z z

γ γ

β γ γ ρ β
ρ β

′− −
′= +

′+ − −
 B�� _"(�) 

11 
*

11 1( )
1( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V$(�) 

12 
*

12 2( )
2( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V"(�) 

13 
*

13 3( )
3( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 VW(�) 

14 
*

14 4( )
4( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 VX(�) 

15 
*

15 5( )
5( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 VY(�) 

16 
*

16 6( )
6( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 VZ(�) 

17 
*

17 7( )
7( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V[(�) 

18 
*

18 8( )
8( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V\(�) 

19 
*

19 9( )
9( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V](�) 

20 
*

20 10( )
10( )

( )
ˆ ( )

( )

xy
dp x

x xz

y b x x
T x D

x D b z z

γ γ

β γ γ
′− −

′= +
′+ − −

 1 V$^(�) 

Table 2. The MSE and PRE with respect to ��^ of the existing and proposed estimators. 

Estimators MSE PRE 

ˆ
oT Sample mean. 178.573 100 

ˆ
MT byMohanty, [12] 291.6909 61.21548 

ˆ
MRVT byMukerjee et al., [16] 144.9957 123.1485 
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Estimators MSE PRE 

ˆ
MNMT by Muhammad et al., [17] 124.3938 143.5441 

The proposed estimator *ˆ( )dp optT  124.076 143.91 

Table 3. The MSE and PREwith respect to ��^ of the proposed estimators. 

*ˆ
dp jT β  

MSEand PRE of theproposed estimators 
*ˆ
dp jT β for j=1,…,20 such that 1α = , 1 xyt b=  and 2 xzt b=  

0.1γ =  0.3γ =  0.5γ =  0.8γ =  1γ =  

MSE PRE MSE PRE MSE PRE MSE PRE MSE PRE 

*
1

ˆ
dpT β  125.0 142.80 124.98 142.9 124.87 143.0 124.65 143.2 154.04 115.9 

*
2

ˆ
dpT β  125.0 142.80 124.98 142.9 124.87 143.0 124.65 143.2 154.04 115.9 

*
3

ˆ
dpT β  125.0 142.80 124.98 142.9 124.87 143.0 124.65 143.3 154.02 115.9 

*
4

ˆ
dpT β  125.0 142.80 125.04 142.8 125.23 142.6 131.51 135.8 262.89 67.92 

*
5

ˆ
dpT β  124.9 142.90 124.81 143.1 124.23 143.7 160.05 111.6 1000.3 17.85 

*
6

ˆ
dpT β  125.0 142.80 124.98 142.9 124.87 143.0 124.65 143.2 154.05 115.9 

*
7

ˆ
dpT β  124.9 142.90 124.82 143.1 124.22 143.7 159.71 111.8 994.92 17.95 

*
8

ˆ
dpT β  125.0 142.80 124.96 142.9 124.78 143.1 124.38 143.6 159.25 112.1 

*
9

ˆ
dpT β  125.0 142.80 125.04 142.8 125.23 142.6 131.50 135.8 262.88 67.92 

*
10

ˆ
dpT β  125.0 142.90 124.96 142.9 124.77 143.1 124.37 143.6 159.25 112.1 

*
11

ˆ
dpT β  167.8 106.40 167.83 106.4 168.05 106.3 177.26 100.7 275.50 64.81 

*
12

ˆ
dpT β  171.1 104.40 171.1 104.4 171.34 104.2 180.99 98.66 282.20 63.28 

*
13

ˆ
dpT β  177.4 100.60 177.44 100.6 177.71 100.5 188.17 94.89 294.85 60.56 

*
14

ˆ
dpT β  183.8 97.15 183.81 97.14 184.11 96.99 195.35 91.41 307.21 58.12 

*
15

ˆ
dpT β  188.7 94.61 188.75 94.6 189.08 94.44 200.89 88.89 316.60 56.40 

*
16

ˆ
dpT β  192.1 92.91 192.19 92.91 192.53 92.74 204.73 87.22 323.04 55.27 

*
17

ˆ
dpT β  196.5 90.83 196.61 90.82 196.97 90.65 209.66 85.17 331.21 53.91 

*
18

ˆ
dpT β  205.7 86.80 205.74 86.79 206.14 86.62 219.80 81.24 347.77 51.34 

*
19

ˆ
dpT β  213.2 83.73 213.29 83.72 213.72 83.55 228.14 78.27 361.15 49.44 

*
20

ˆ
dpT β  223.6 79.83 223.69 79.82 224.17 79.65 239.59 74.53 379.23 47.08 

*ˆ( )dp optT  MSE =124.076 PRE=143.91 at 1 2 and t t  optimum values for all j’s 

 

6. Results and Discussion 

6.1. Table 2 Results 

The existing estimators ˆ
MRVT by Mukerjee et al.,[16] 

and estimator ˆ
MNMT by Muhammad et al.,[17]for 

estimating the population mean of the study variable have 

significant improvement on the sample mean because they 

have smaller MSE and higher percent relative efficiency. 

The proposed estimator 
*ˆ( )dp optT  is the most efficient 

estimator. 

6.2. Table 3 Results 

All the proposed estimators 
*ˆ
dp jT β , j=1,…,13 at

0.1 0.5γ = − , are more efficient than the sample mean 

because they have smaller MSE and higher percent relative 

efficiency while these proposed estimators 
*ˆ
dp jT β , 

j=14,…,20at 0.1 1γ = − have no significant improvement on 

the sample mean because they have higher MSE and lower 

percent relative efficiency. The proposed estimators 
*ˆ
dp jT β , 

j=1,…,10 at 0.1 0.5γ = −  are the most efficient estimators 

because they perform better than the sample mean, the 

existing estimators, ˆ
MT  by Mohanty [12] and estimator, 

ˆ
MNMT by Muhammad et al.,[17]. The proposed estimators 

*ˆ
dp jT β , j=1,…,10at 0.1 0.5γ = −  are estimators that utilized 

known parameter such as coefficient of variation, coefficient 

of kurtosis, coefficient of skewness of an auxiliary variable X 

and correlation coefficient of X and Y. The proposed 

estimators 
*ˆ
dp jT β , j=13,…,20 at 0.1  1γ = − , are estimators 
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that utilize the third to tenth deciles and they do not have 

significant improvement on the existing estimators. 

In general, from Table 3 results, The proposed class of 

ratio type estimator
*ˆ
dpT , att$and t"  optimum values, is the 

most efficient estimator because it has the least MSE and the 

highest PRE and it slightly perform better than the existing 

estimators, ˆ
MNMT by Muhammad et al., [17]. Alternatively, a 

good guess of - for the sub-members,
*ˆ
dp jT β , j=1,…,10, when

1 xyt b= and 2 xzt b=  at 0.1 0.5γ = − are efficient as estimator 

*ˆ
dp jT β , j=1,…,20 at 1t and 2t  optimum values. 

7. Conclusion 

In this work, a class of double sampling difference cum 

ratio-type estimator was proposed using two auxiliary 

variables with known population parameters of the auxiliary 

variable(X). The conditions under which the proposed 

estimators have minimum mean square errors are mentioned 

in section 4. In conclusion, the proposed class of double 

sampling ratio type estimator 
*ˆ
dpT att$and t" optimum values 

and sub-members of the proposed class of estimator
*ˆ
dp jT β , 

j=1,…,10 at 0.1 0.5γ = − performs better than the existing 

estimators by Mohanty, [12], Mukerjee et al., [16] and 

Muhammad et al., [17]. The proposed class of double 

sampling ratio type estimator is recommended for practical 

application. 
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