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Abstract: Shrinkage methods for linear regression were developed over the last ten years to reduce the weakness of ordinary 

least squares (OLS) regression with respect to prediction accuracy. And, high dimensional data are quickly growing in many 

areas due to the development of technological advances which helps collect data with a large number of variables. In this 

paper, shrinkage methods were used to evaluate regression coefficients effectively for the high-dimensional multiple regression 

model, where there were fewer samples than predictors. Also, regularization approaches have become the methods of choice 

for analyzing such high dimensional data. We used three regulation methods based on penalized regression to select the 

appropriate model. Lasso, Ridge and Elastic Net have desirable features; they can simultaneously perform the regulation and 

selection of appropriate predictor variables and estimate their effects. Here, we compared the performance of three regular 

linear regression methods using cross-validation method to reach the optimal point. Prediction accuracy using the least squares 

error (MSE) was evaluated. Through conducting a simulation study and studying real data, we found that all three methods are 

capable to produce appropriate models. The Elastic Net has better prediction accuracy than the rest. However, in the simulation 

study, the Elastic Net outperformed other two methods and showed a less value in terms of MSE. 
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1. Introduction 

With the advancement of technology, data are turning into 

high-dimensional data that may cause many problems in 

various research, scientific, medical and engineering fields 

[10]. Compared to conventional data, this type of data refers 

to unusual and unstructured data. The analysis of big data 

requires methods other than the traditional analytical 

framework [9]. In classical statistical theory, it is assumed 

that the number of n observations is higher than the number 

of variables or parameters, but for high-dimensional data the 

number of variables is greater than the number of 

observations. The analysis of these data has changed 

statistical thinking [9]. 

In many applications, the interested response variable is 

dependent on a relatively small number of predictors. For 

example, in genetic studies using micro arrays, there is 

myriad predictor gene, but only few of them are the 

important variables associated with the disease. How to 

identify "sparse" variables in case of high-dimensional data 

has become a rudimentary challenge [10]. 

Hoerl and Kennard introduced ridge regression in 1970 

and stated that, despite the correlation between predictor 

variables, the use of least square cause errors in estimation. 

He developed ridge regression as an alternative which allows 

estimations to be done with less variance than the least 

squares method [11]. 

To overcome this challenge, various penalized methods 

including Ridge regression (Hoerl & Kennard, 1970) have been 

proposed [3]. This regression coefficient is estimated with ℓ� 

penalty. Ridge regression is known to shrink the coefficients of 

correlated predictors towards each other (Friedman, Hastie, and 

Tibshirani, 2001) [4]. The main purpose of Hoerl & Kennel 
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(1970) in Ridge's regression research was to introduce this 

feature. If β� has no limitation, it can be very large and extensive. 

It is therefore they are sensitive to very high variance. To control 

variance, coefficients can be regulated [5]. 

Lasso- Least Absolute Shrinkage and Selection Operator- 

was first proposed by Robert Tibshirani [8] in 1996. Lasso 

method is a powerful technique that performs two main 

tasks: regularization and feature selection. In this method, a 

constraint is put on the sum of the absolute value of model 

parameters where the sum is less than a fixed value. To do 

this, a shrinking (regularization) process is applied where the 

coefficients of the regression variables shrink or some of 

them reach to zero. During the features selection process, 

variables that have non-zero coefficients after shrinking 

process are selected as a part of the model. The purpose of 

this process is to minimize the prediction error [9]. 

Zou and Hastie [13] introduced Elastic Net which 

outperforms Lasso, especially in cases where the number of 

predictions is significantly larger than the sample size (p >> 

n), while maintains its sparsity. Elastic net can perform both 

automatic variable selection and continuous shrinkage 

simultaneously and select a group of correlated variables. 

Elastic net can be used as a linear combination of Ridge and 

Lasso lines. Estimation of elastic net is a two-step method 

that first defines regression coefficient for each fixed ��, then 

conducts a lasso-type shrinkage along the path, which seems 

to incur a double amount of shrinkage. While double 

shrinkage does not help to reduce the variances much, it 

reduces unnecessary values compared to lasso or ridge. 

In this paper, we evaluate the performance of three 

penalized regression methods: Ridge, Lasso, and Elastic Net. 

2. The Regularization Models 

The regression model used to predict the performances of 

each of the above-mentioned methods are as follows: 

� = �	 + �; 	�~�(0, ��) 
where y = (y�, y�, … , y�)� is observation vector, X is n × p 

Matrix of predictors, β = (β�, β�, … , β�)  is regression 

coefficients vector and ε is the vector of residual errors with var(ε) = σ�I variance [1]. 

The least square method provides the estimation of 

parameters by minimizing the following function: 

#$%&'(
	),	 *∑ (,- − 	) − ∑ /-0	0102� )�3-2� 4               (1) 

Usually, the least squares estimate obtained from equation 

(1) is non-zero, but if p is big, this challenges the 

interpretation of final model. In fact, if n <p, the estimation 

of least squares is not unique. Thus, there are different 

methods that make target function equal to zero. Therefore, it 

is required to limit or regulate the estimations of coefficients 

that is called penalty. Penalized regression is used when there 

are an excessive number of independent variables in the 

regression or high-dimensional problems (SLS) [8]. 

2.1. Ridge Regression 

Ridge regression [3] is perfect if there are various 

predictors, all with non-zero coefficients and collect from a 

normal distribution [6]. In specific, it carry out well with 

many predictors each having small outcome and prevents 

coefficients of linear regression models with many correlated 

predictors from being poorly determined and exhibiting high 

variance. Ridge regression shrinks the coefficients of 

correlated predictors equally towards zero. 

Equation (2) represents Ridge regression estimator using ℓ� penalized least squares as: 

	56-789 = #$%&'(
	 ‖, − 	;�‖� + �‖	‖��            (2) 

Where ‖, − 	;�‖� = ∑ (,- − �;	)�3-2�  is ℓ� -norm loss 

function, x=�  is the i-th row of X, ‖	‖�� = ∑ 	0�102� is the	ℓ�-

norm penalty on β and λ ≥ 0  is regulation parameter which 

regulates penalty (linear shrinkage) by determining the relative 

importance of the data-dependent error. Since the value λ is 

depended on the data, cross-validation method can be used [1]. 

By substituting these values into Equation (2), we have: 

#$%&'(
	), 	 *∑ (,- − 	) − ∑ /-0	0102� )�@-2� 4	A. C	 ∑ 	0�102� ≤ C  (3) 

Where t is a user-specified parameter. 

2.2. Lasso 

Lasso is a method that shrinks the loss of absolute error 

sum of squares and constraints the sum of the absolute value 

of coefficients. Since the nature of this constraint has a 

shrinking effect on coefficients and even sets some to zero, it 

provides proper interpretative regression models 

automatically [8]. 

The lasso estimator uses the ℓ� penalized least squares basis 

to obtain a sparse solution to the following optimization problem. 

	5 EFGGH = #$%&'(
	 ‖, − 	;�‖� + �‖	‖�            (4) 

Where ‖	‖� = ∑ 	0102�  is a norm penalty of ℓ� under 	 

that expresses the degree of sparsity and � ≥ 0 is regulation 

parameter [1]. 

Equation (4) can be written as: 

#$%&'(
	), 	 *∑ (,- − 	) − ∑ /-0	0102� )�3-2� 4	A. C	 ∑ I	0I0 ≤ C   (5) 

ℓ�  penalty allows Lasso to regulate the least squares 

estimates, reduce the number of components to zero and 

perform the proper selection simultaneously. However, Lasso 

has a weakness in high-dimensional data i.e. when J > 	(, it 

can’t choose large predictors than the sample size earlier it 

saturates [14]. Lasso reduces the characteristics of predictors 

that have an indistinguishable bias [2] and can only usually 

carry out predictor selection when the predictor matrix fulfils 

a moderately powerful condition [14]. 
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2.3. Elastic Net 

Elastic Net is other regularization and variable section 

method which includes a tuning parameter α ≥ 0 and is the 

combination of two previous methods (Lasso and Ridge). 

Elastic Net overcomes the limitations of the Lasso. It deals 

with the correlation problem of Ridge regression and large 

selection of variables in the Lasso regression using ℓ�  and 

ℓ�	penalties. When α = 1, Elastic Net is changed into ridge 

regression (explained in the previous section). For	α ∈ [0,1), 

the Elastic Net penalty function is singular at zero and it is 

strictly convex for all α > 0, thus having the characteristics 

of both the Lasso and Ridge regression. The Lasso penalty is 

convex but not strictly convex [12]. 

The Elastic Net uses a combination of ℓ� and ℓ�	penalties 

and can be defined as: 

	59EFGP-Q = (1 + RS@ ){#$%&'(‖, − �	‖� + ��‖	‖� + ��‖	‖�	}                                             (6) 

On setting α = RSRVWRS, the estimator of Equation (7) will be similar to the minimizer of: 

	59EFGP-Q = X1 + RS@ Y {#$%&'(‖, − �	‖� + ��‖	‖� + ��‖	‖�}	A. C	(1 − Z)|	�| + Z|	|� ≤ C                       (7) 

Where (1 − Z)‖	�‖ + Z‖	‖� is the Elastic Net and is the 

convex combination of Lasso and Ridge penalties [1]. 

3. Descriptor Data Set 

Three states of n and p are investigated. Firstly, the initial data 

set including n = 35 observations and p = 17 predictions (n > p) 

are studied. Then, n = 12 observations and p = 17 predictions 

(n < p) are also studied. Finally, the data set are also calculated 

when n = p = 17. In this study, the data sets are used from ISLR 

package on Hitters data available in R software. 

3.1. Choosing the Tuning Parameter 

The most important point in selecting penalized regression 

models is choosing a suitable value for the tuning parameters. 

There are various ways to select the tuning parameter. including: 

a. The bootstrap 

b. Information criteria like AIC, BIC, RIC 

c. SURE (Stein's Unbiased Risk Estimate) 

d. SRM (Structural Risk Minimization) 

e. Stability-based methods 

The most popular one is the cross-validation method and we 

use it to obtain the tuning parameter. For example, we use a 

10-fold cross validation to select the tuning parameter. The 

intended method includes dividing the data set into 10 identical 

subsamples i.e. the optimal model is used in 9 subsamples (90 

percent of data as training sets) and the evaluation of model 

performance in the remaining samples (10 percent of data as 

test set) is studied. Then, this procedure is repeated for each 10 

subsamples which are used as validation set once. Finally, a λ	value is selected that has the least mean square error. 

In Table 1, the value of λ]=^ and λ�_` tuning parameters for 

each three methods in the three studied states are presented: 

Table 1. The value of the tuning parameters for the three methods n = 35, 17, 12 and p = 17. 

 
a > b  a = b  a < b  cdea  cfgh  cdea  cfgh  cdea  cfgh  

ridge 3104.275 7870.469 264162.4 56568.99 4429.444 8495.276 
lasso 46.0975 154.5005 51.85615 165.9017 82.99969 109.7207 

elastic 101.1839 256.5381 90.20366 250.9971 22.46051 41.11932 

 
In the Lasso and Ridge regression, the value of λ]=^  in 

low-dimentional data (( > 	J ) is less than the one in the 

high-dimentional data ( (	 < J ), but λ�_` , shows that the 

standard deviation error has a lower value in the high-

dimension. In the elastic net, both values of λ are reduced in 

all three states. 

Since the constraints applied to the parameters in the Lasso 

are higher than the elastic net and ridge, the value of λ for the 

Lasso in all three states ( > 	J, (	 = 	J	and (	 < J  will be 

lower than the elastic net and ridge. 

 

Figure 1. Crass-validation plot of high dimensional data (p=17, n=12)–Ridge. 
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Figure 2. Crass-validation plot of high dimensional data (p=17, n=12)–Lasso. 

 

Figure 3. Crass-validation plot of high dimensional data (p=17, n=12)-Elastic net. 

In Figures 1, 2, 3 the red dots are the cross validation error 

and the top and down lines are the standard deviation. The 

left vertical dashed line refers to the candidate associated 

with the minimum MSE, and the right vertical dashed line 

refers to the largest candidate which is 1 standard deviation 

away from the minimum MSE. Since λ]=^  had the least 

squares mean of the cross validation error, we used this value 

of � to fit the model. 

3.2. Fitting and Analyzing Models 

Prior to evaluation of each method, at first the data are 

divided into training and test sets. Training set is defined as a 

subset of our initial observations used for modeling. In 

contrast, test set is used as a means for validation and 

performance evaluation of model resulted from training set. 

In this way, usually a model in the training set is trained and 

then model prediction accuracy in the test set model is used 

to assess model fitting. We divided the data set into 50:50. 

All results obtained from regression models of Ridge, Lasso 

and Elastic Net were calculated by glmnet at R [6]. To 

investigate optimization fully, 10-fold cross-validation (CV) 

at Glmnet was used. 

4. Results and Discussion 

We described several penalized linear regression methods. 

In this section, we carried out experiments to test the 

performance of three methods. Penalized methods can bring 

down the model prediction error to zero by reducing the 

regression coefficients and lowering the estimates. In all 

three cases, the data set were divided into training and test 

sets. The division based on random sample was conducted, in 

which all models focused only on training set and then they 

were evaluated on the test set. The values of tuning parameter 

were also selected according to the explanation presented in 

sub-section (2.2) through 10-fold cross-validation. 

In the Ridge Regression, all variables were in the model. If 

the dimension increases, the value of the regression 

coefficients decreases. When ( K J the estimated value for 
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AtBat is 6.095562e-02 and by increasing dimension (( < J) 

its value were reduced to 0.046772123, which means that 

values are close to zero. 

In all three states, Ridge regression didn’t perform any 

variable selection and all variables were present in the model 

with values close to zero (but not exactly zero). 

Table 2 indicates 10 variables selected from 17 covariate 

variables by Ridge regression and the coefficients estimated 

from actual data. 

Table 2. The estimated coefficients for ridge regression when n = 35, 17, 12 and p = 17. 

Covariate 
a > b  a = b  a < b  

Estimate Estimate Estimate 

AtBat 6.095562e-02 0.05210685 0.046772123 

Hits 1.957214e-01 0.158989686 0.129869441 

HmRun 7.746080e-01 0.604271053 0.677242729 

Runs 2.784005e-01 0.263803187 0.201909315 

RBI 3.246204e-01 0.287511662 0.322156616 

Walks 3.691845e-01 0.491997136 0.459408811 

CRuns 3.990050e-02 0.034330322 0.032617473 

CAtBat 5.161903e-03 0.004682497 0.005135992 

CHits 1.724367e-02 0.015920369 0.017781588 

CHmRun 1.458783e-01 0.116790172 0.101384765 

Table 3 indicates the variables selected in the lasso model as well as the estimated values for all three states. In J > 	(, J	 = 	( and ( > J, Lasso method selects 4, 3 and 3 variables from 17 variables, respectively. Other variables became exactly 

zero in all three states. 

Table 3. The estimated coefficients for lasso regression when n = 35, 17, 12 and p = 17. 

a > b  a = b  a < b  

Covariate Estimate Covariate Estimate Covariate Estimate 

AtBat 0.3183589 AtBat 0.03368616 Walks 0.34407434 

Years 9.197508 Hits 0.14660423 Years 3.49588665 

CWalks 0.6141448 CWalks 0.75911681 CAtBat 0.01610091 

    
CWalks 0.54286127 

 
The estimated values for the variables selected in final 

model are different. The Lasso regression method selected 

different variables for different states and n & p. The CWalks 

variable is selected for all three states but its value in the low 

dimension (( > 	J) is 0.6141448 and in the high-dimension is 

0.54286127. As increasing dimension, the value of the variable 

decreases and approaches to zero. In cases where the variable 

is not suitable for the model, it is exactly equal to zero. 

Table 4 indicates the variables selected in Elastic Net as 

well as the estimated value for all three states. In J > 	(, J	 =	( and ( > J, elastic net method selects 9, 6 and 6 variables 

from 17 variables, respectively. Other variables became 

exactly zero in all three states. 

Table 4. The estimated coefficients for elastic net when n = 35, 17, 12 and p = 17 and α=0.5. 

a > b  a = b  a < b  

Covariate Estimate Covariate Estimate Covariate Estimate 

AtBat 1.688506e-01 AtBat 3.311503e-02 Walks 2.878433e-01 

Hits 3.619648e-01 Walks 1.132776e+00 Hits 4.594785e-01 

Years 7.972191e+00 Years 1.344545e-01 HmRun -6.971255e+00 

CAtBat 2.638743e-03 CAtBat 9.999613e-03 Walks 5.431424e+00 

CRuns 9.842182e-02 CRuns 9.358924e-02 Years 2.048237e+01 

CWalks 4.172970e-01 CWalks 4.622549e-01 CAtBat 8.307153e-06 

    
CWalks 3.671226e-01 

    
PutOuts -1.771942e-01 

    
Assists -1.852446e-01 

 
With increasing dimension In the Elastic Net regression, 

more variables are selected to be in the model because the 

Elastic Net is group selection, and the obtained values are 

less or negative, so it had better estimation in the model. 

Although 9 variables were selected for the model (( < J), 

but it would be a good fit. The negative values include 

PutOuts, Assists and HmRun. 

According to above tables and obtained results, since 

Ridge regression did not perform variable selection, it is not 

studied here. In the comparison between the values obtained 

from the Lasso and Elastic Net, we see that the coefficients 

obtained in the Elastic Net are less than that of lasso. 

Although the number of variables selected in the Elastic Net 

is more than that of Lasso, since the values are less, it 

presents a better model compared to Lasso. 
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Figure 4. Non-zero coefficients plot of high dimensional data (p=17, n=12) – Ridge. 

 

Figure 5. Non-zero coefficients plot of high dimensional data (p=17, n=12) – Lasso. 

 

Figure 6. Non-zero coefficients plot of high dimensional data (p=17, n=12) - Elastic Net. 
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Figures 4, 5, 6 shows the regression coefficients of the 

Ridge, Lasso, Elastic Net. As we can see in the figure, the 

black color variable in the Ridge regression, the red and cyan 

color variables in the Lasso regression, and the pink color 

variable in the Elastic Net regression have the largest effect 

on the response variable. They are the first variables to enter 

the model and the subsequent variables with different effects 

enter the model. Finally, the coefficients of ineffective 

variables in the model become zero. 

5. Simulation Study 

Using Monte Carlo simulations, we want to obtain the 

prediction accuracy of penalized regression methods: Lasso, 

Ridge and Elastic Net. To do this simulation, the preliminary 

data from a normal distribution are generated randomly and 

then the results obtained from these methods are calculated 

by 500 replications. In this simulation, X =(x�, … , x�)� matrix is generated from normal distribution 

(mean= 2 and variance=0.25) which has been done on the 

simple linear regression model: 

,- = /�-	� + /�-	� + ⋯+ /1-	1; 	' = 1,2, …( 

l,�⋮,@
n = l	/��	/�� ⋯ /�1⋮	⋮ ⋱ ⋮/@�	/@� ⋯ /@1

n l	�⋮	@
n + l��⋮�@n 

� = �	 + �; 	�~�(0, ��) 
Where regression coefficients are 	 = (2,… 2pqr

G2s
, 0, … 0pqr
1tG2��

); . 

The ε  values are generated from normal distribution with 

zero mean and variance of 0.25. 

5.1. Case Where p > n 

In this state, we confront high-dimensional data, thus the 

penalized regression methods namely Lasso, Ridge and 

Elastic net are used. Number of observations and predictors 

is n = 12 and p = 17, respectively. Based on previous section 

and the analysis of actual data in Ridge regression, here 

Ridge regression didn’t perform any variable selection and 

none of the coefficients became zero. However, Lasso and 

Elastic Net performed variable selection. 

According to Table 5 Lasso and Elastic Net selected 5 

variables for the model, but the mean square error in Elastic 

Net was estimated to be lower than that of Lasso and Ridge. 

Table 5. λ and MSE for each of Ridge, Lasso and Elastic net methods with σ 

= 0.5. 

 Variables Selection cdea  MSE 
ridge 546.3457 20.07218 all 
lasso 546.155 0.15546 5 
elastic 545.9098 0.1308232 5 

5.2. Case Where p = n 

In this state, the number of observations and predictors is 

n=17 and p = 17, respectively. Ridge regression did not 

perform any type of variable selection and none of 

coefficients became zero, but Lasso and Elastic Net 

performed variable selection. 

According to Table 6, Lasso and Elastic Net (with σ =0.5 ) select 2 and 4 variables, respectively. However, the 

mean square error is less than that of Lasso and Ridge. 

Table 6. λ and MSE for each of Ridge, Lasso and Elastic net methods with σ 

= 0.5. 

 Variables Selection cdea  MSE 
ridge 2831.925 401.4436 all 
lasso 2836.371 3.108232   2 
elastic 2836.326 6.216464 4 

5.3. Case Where p<n 

In this state, the number of observations and predictors is 

n= 35 and p = 17, respectively. Ridge regression did not 

perform any type of variable selection and none of 

coefficients became zero, but Lasso and Elastic Net 

performed variable selection. 

According to Table 7, Lasso and Elastic Net (with σ =0.5) select 11 and 10 variables, respectively. However, the 

mean square error is less than that of Lasso and Ridge. 

Table 7. λ and MSE for each of Ridge, Lasso and Elastic net methods with σ 

= 0.5. 

 Variables Selection cdea  MSE 
ridge 547.309 25.1206 all 
lasso 547.671 0.08419426 2 
elastic 547.1962 0.2225997 4 

From the simulation results, we observed that Lasso had 

the higher sparsity and less variable selection than the Elastic 

net in all three states n and p. The parameters were selected 

with 10-fold cross validation, while having the same level of 

performance. Although Lasso had less variable selection than 

Elastic net, but the MSE of Elastic net was less than Lasso in 

all three states. 

The dataset is obtained from the MASS, R package being 

analysed for the statistical inference purposes such as 

variable selection, hypothesis tests and the covariance test by 

some researchers including [7]. The results obtained for the 

penalized regression performance of the methods, the 

variable selection was similar to the one that was obtained in 

our study. In addition to accuracy of the performance of the 

methods and variable selection, we used the MSE to the 

accuracy of the penalized regression. 

6. Conclusion 

Using a simulation study for the penalized regression 

methods of the Ridge, Lasso and Elastic Net, we calculated 

the MSE value for different types of variance and tuning 

parameter through cross-validation. In particular, we 

investigated the prediction, estimation of parameters and 

variable selection under these methods and conditions. In the 

simulation study, we considered different conditions for 

variance. The main findings of the simulation results and real 
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data analysis are summarised below: 

The Elastic net performance was better than two other 

methods and had less MSE compared to other methods. In 

comparison between the Lasso and Ridge, although the Lasso 

performed the variable selection, it had more MSE compared 

to the Ridge. When the standard deviation is 0.5, the variable 

selection of Lasso is better than other methods, and less 

variables are in the model. 

The Ridge regression tends to select all variables. In this 

case, it may select a number of nuisance covariates but with a 

low value and near zero. 

The simulation results shows that the Lasso performs 

better than Elastic net in low-dimensional situations of 

variable selection but in prediction accuracy, MSE of Elastic 

net is better than Lasso. When the dimension of p increases, 

the prediction and variable selection of the elastic net is as 

good as the Lasso. These results are still valid for the 

different standard deviations. 

In real data, although the Elastic net selects the highest 

number of variables compared to Lasso in all three states and 

since the Elastic net performs group selection and the 

estimated coefficients are less than that of Lasso, therefore it 

had better performance. 
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