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Abstract: This research examine different covariance structures for experimental design with repeated measure data. 

Multiple responses taken sequentially from same experimental unit at different periods of time for quantitative data are referred 

as Repeated Measurement. Weight of 105 broilers in grams for six group obtained from jewel farm Gombe were used as 

research materials/data. Eleven different covariance structures including the modified one (UN, UNC, TOEP, TOEPH, 

ANTE(1), AR(1), ARH(1), CS, CSH, HF and ARFA(1)) were examined. AIC, AICC, BIC, HQIC, CAIC and the modified 

criteria ASIC were used to examine covariance structures and bring the best among them using the named information criteria. 

The result shows that sphericity assumptions was violated a such the best covariance structure was ARH(1) while the least 

structure was CSH. Also on the basis of goodness of fit criteria HQIC was found to be the best information criteria. When 

examined the best information criteria and covariance structure with the modified ones, the modified ASIC and ARFA(1) found 

to be the best. In conclusion examine different covariance structures with repeated measure data give a very good result 

defending on the kind of data. 

Keywords: Covariance Structures. Experimental Design, Repeated Measures, Information Criteria, Sphericity Test 

 

1. Introduction 

Repeated Measures Designs (RMD) are popular because 

they allow subject to serve as their own control [1]. This 

improves the precision of the experiment by reducing the size 

of the error variance on many of the F – tests. Repeated 

measure design has several advantages that make it become 

popular and active in research. Most important it reduces the 

unsystematic variability in the data and provide greater 

power to detect the effects, also it assumed that data from 

different experimental areas will be related, we assume that 

the relationship between pairs of experimental conditions is 

similar [2]. Repeated measures can occur in any common 

experimental design like completely randomized design, 

randomized complete block design, split block design, strip 

plot design and so on with a straightforward analysis of 

variance procedures to analyze the data if the following 

assumptions are valid: Normality: the data are normally 

distributed with mean 0 and the variance σ
2
. Homogeneity of 

variance: the error variances are equal. Sphericity: the 

variances between all pairs of the repeated measurements are 

equal, the so-called compound symmetry pattern (i.e. the 

covariance between observations within any two different 

factor levels be the same). Compound symmetry is a special 

case of more general property of sphericity. If compound 

symmetry exists, then sphericity also exists, but it is possible 

for sphericity to exist when compound symmetry does not. At 

times, the structure of covariance matrix can be extremely 

complicated. Second, the data may not be complete due to 

one reason or another, an incomplete or unbalanced repeated 

measures design is much more cumbersome to deal with than 

a design which does not have missing observations [2]. 

Analysis of covariance structures is the common term for 

a number of techniques for analyzing multivariate data in 

order to detect and assess latent sources of variation and 
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covariation in the observed measurements. The techniques 

of covariance structure analysis are general and flexible in 

that they can handle many types of covariance structures 

useful especially in the behavioral and social sciences. 

Although these techniques can be used for exploratory 

analysis, they have been most successfully applied to 

confirmatory analysis where the type of covariance 

structure is specified in advance. A covariance structure of 

a specified kind may arise because of a specified 

substantive theory or hypothesis, a given classificatory 

design for the measures, known experimental conditions, or 

because of results from previous studies based on extensive 

data. Sometimes the observed variables are ordered through 

time, as in longitudinal studies, or according to linear or 

circular patterns, as in [3] simplex and complex models, or 

according to a given causal scheme, as in path analysis. 

Several investigators have considered covariance structure 

analysis as an approach to study differences in test 

performance when the tests have been constructed by 

assigning items or subtests according to objective features 

of content or format to subclasses of a factorial or 

hierarchical classification [4, 5, 6]. Once you have the 

random effects determined, then you can move on to 

selecting the covariance structure. There are a variety of 

considerations when selecting the covariance structure. 

They include the number of parameters, the interpretation 

of the structure, diagnostic results, and effects on fixed 

effects. If the data suffices, one could always fit the 

unstructured covariance structure and go with it. However, 

just as in traditional regression we want to have as few 

parameters in the model as possible. The more data you 

have the more parameters you can fit, but they do not 

always add to our knowledge and often take away. The 

more complex the model the more specific to the data it 

will be and the less generalizable. Our belief that nature 

follows simple, elegant rules leads us to look for the 

simpler model when possible. From the fixed effects 

perspective, selecting a structure that is too simple increases 

the fixed effects, Type I error rate, and selecting a structure 

that is too complex sacrifices power and efficiency. 

Covariance measures how much variation in one variable is 

explained by another variable and is used to calculate 

correlations. Covariance structures describe mathematical 

patterns exhibited by covariance and correlation matrices. 

Some covariance structures require that the measurements 

occur at equally spaced intervals, while others are more 

flexible and do not need this requirement. Model 

diagnostics, such as AICC, AIC, BIC and other measures 

are used to select the covariance structure that best fits the 

data. Selecting the right covariance structure is not an end 

unto itself. It is an intermediate step in obtaining correct 

tests and inference about the fixed effect means. The usual 

strategy for selecting the best covariance structure, without 

a priori knowledge of a repeated measures process, is to fit 

the structures appropriate for the measurement points, 

(equal or unequal intervals) and compare the AICC, AIC or 

BIC values. (Remember, the information criterion values 

are relative and indicate which options provide the better fit. 

Not how well the model fits the data in absolute terms. This 

research also examined the impact of using different 

covariance structures for experimental design with repeated 

measure data. 

2. Materials and Method 

2.1. Source of Data 

A secondary data was used which was obtained from 

Gombe farm. The sample size of the data used consist of 105 

broilers. The sample was divided into six groups, where each 

was fed with different kind of food. The weight of each 

broiler was measured in grams on weekly basis during the 

period, starting from week 0 to week 6. 

2.2. Mauchly’s Sphericity Test 

[7]Highlighted that when sphericity tests such as the 

techniques outlined by [8] shows variance inequalities in the 

sample; the effect of violating sphericity assumption is a loss 

of power and a test statistic that cannot be compared to 

tabulated values of the F – distributions. The authors 

recognized that even if sample variances are unequal, such 

inequalities might simply reflect sampling error. Therefore, 

Mauchly’s sphericity test (i.e., Mauchly’s W) be used to test 

the null hypothesis that the homogeneity condition holds in 

the population. 

When the sphericity test is significant, SPSS, R or Stata 

Packages offers two ways to test the significance of the 

within-subject effects. The first way is to adjust the 

univariate tests themselves, SPSS, R or Stata packages gives 

three such adjustments: Greenhouse – Geisser Epsilon 

adjusted F test which was developed by [9], the less 

conservative Huynh – Feldt Epsilon adjusted F test which 

was developed by [10] and the Lower bound Epsilon. The 

second way involves four different multivariate tests: Wilks’ 

Lambda, Pillai’s Trace, Hotelling-Lawley Trace and Roy’s 

Greatest Root. None of these methods has been indicated to 

be better than the others. Hence, all are similar to using the 

Hotelling T
2
 statistic. 

'Hotteling s  ( ) ( )2 1

wgT N GM S GM
−′=                (1) 

whereas, 

N indicates the number of groups. 

GM indicates the overall mean of groups. 

Swg indicates the treatments variance-covariance matrix. 

Wilks’ λ can be obtained using the equation below: 

1

2
1 T

λ =
+

                                   (2) 

Hypothesis, 

H0: The groups mean are significantly equal. 

H1: The groups mean are significantly not equal. 

Decision rule: Reject Ho if P<0.05 and conclude that there 
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is significant differences between the groups otherwise 

accept Ho if P>= 0.05 and conclude vice versa. 

2.3. Covariance Structures 

This research shall examine the consequences of fitting 

models that assumed homogeneous variances to data that exhibit 

variance heterogeneity. A brief summary of the covariance 

structures with seven (7) repeated measures are as follows. 

2.3.1. Compound Symmetry (CS) 

The CS structure is a covariance pattern where each main 

diagonal element is decomposed to unity and all off-diagonal 

elements are set to the value of ρ . 

CS = 
2
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                   (3) 

2.3.2. Heterogeneous Compound Symmetry (CSH) 

This pattern is a simple generalization of the CS structure 

that allows for non-constant variances on the main diagonal. 

While the assumption of sphericity is met in the CS structure, 

sphericity is not met in CSH due to the introduction of 

variance heterogeneity.
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2.3.3. First Order Autoregressive (AR(1)) 

The AR(1) structure was adapted from time series analysis 

where it is often used to account for the internal structure or 

autocorrelation of observations over time. It models the 

relationships of the measurement occasions parsimoniously by 

imposing a decreasing exponential trend between time lags. 

AR(1) = 
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              (5) 

2.3.4. Heterogeneous First Order Autoregressive (ARH(1)) 

This is a simple generalization of the AR(1) pattern that 

allows for non-constant variances with respect to 

measurement occasions. This is a first-order autoregressive 

structure with heterogeneous variances. 

                                                (6) 

2.3.5. Toeplitz (TOEP) 

The TOEP structure is akin to the AR(1) structure in that the covariance between any two measurement occasions is constant 

for all at the same time lag. 

TOEP =                                                              (7) 

2.3.6. Heterogeneous Toeplitz (TOEPH) 

Once again, this pattern is a generalization that allows for non-constant variances with respect to measurement occasions. 
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TOEPH = 
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                                           (8) 

2.3.7. Unstructured (UN) 

The UN pattern imposes no constraints on the form of the covariance matrix and, as a result, requires a parameter estimate 

for each element of the matrix. 

UN = 
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                                                          (9) 

2.3.8. Unstructured Correlation (UNC) 

UNC structure is the most complex because it is estimating unique correlations for each pair of time points. 

UNC = 
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                                                       (10) 

2.3.9. Huynh – Feldt (HF) 

Huynh – Feldt is a circular matrix in which the covariance between any two elements is equal to the average of their 

variances minus a constant. Neither the variances nor the covariances are constant. 
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2.3.10. First Order Ante – Dependence (ANTE(1)) 

First order ante – dependence is the covariance structure with different variances in the diagonal and different covariances in 
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the off diagonal. 

ANTE (1) = 

2
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2.4. Modify Variance – Covariance Structure 

2.4.1. First Order Auto – Regressive 

AR (1) model is given as ( )1 t tL Yφ ε− = , where tε is an 

independent white noise error term with zero mean and 

constant variance ( )20,σ , and constant correlation ( )ρ . 

The density of tε is ( ) 21
2

2

1

2

t

tp e
σε

πσ
−=  

To calculate [ ]1tE Y− by taking expectation of both sides, we 

obtain, 
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We know, 
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∴ =                       (14) 

So that [ ] [ ]2

2 ,t tE Y E Yφ −=  

Now, we need to find [ ]2 ,tE Y − clearly this process will 

never end. It is possible to break this infinite regress since by 

definition [ ] [ ]1t tE Y E Y−= . It then follows that [ ] [ ]t tE Y E Yφ=

( ) [ ]1 0L tE Yφ⇒ − =  

Assuming that 1.φ ≠ We conclude that Yt is an AR(1) 

given E[Yt] = 0. 

Same process can be followed to calculate var[Yt] for an 

AR(1) from equation above, we have 

[ ] [ ]1t t tVar Y Var Yφ ε−= +
 

[ ]
[ ]

[ ] [ ]

[ ] [ ]

2

2

1 1

0

1

2 var ,

,

t

t t t t

Var Y

t t

Var Y Co Y Var

Hence

Var Y Var Y

σ

φ φ ε ε− −

= =

−

= + +

=

����� ������� �����

     (15) 

and tε is i.i.d and hence uncorrelated with Yt-1. Solving for 

Var[Yt], we obtain 

[ ]
2

21
tVar Y

σ
φ

=
−

                               (16) 

2.4.2. Factor Analysis 

Factor Analytic (FA) is prevalent in educational statistics 

as well as psychometrics [11], [12]. The general factor 

analytic form is given as 

D′ΛΛ +                              (17) 

where Λ is a lower triangular matrix and D is a diagonal one. 

The elements of Λ are called factor loading and those of D 

specific variances. The portion of the total variance modelled 

in Λ represents variability attributes to some underlying 

common factors, whereas the remaining portions are unique. A 

side from these interpretation, the FA structures provide 

another useful and distinct way of modelling heterogeneity. 

For the two FA structures, all column of ′Λ except for the first 

are assumed to equal 0. These are known as first order FA 

structures because they only model one common factor. Higher 

order FA structure are also possible, although in this case 

constraint may be placed on a few of the parameters in order to 

fix the rotation [13]. The FA (1) structure is given below as; 
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Let x(p x I ) be a random vector with mean µ  and 

covariance matrix ∑ . Then we say that the k-factor model 

holds for x, if x can be written in the Form 

x f u µ= Λ + +                          (19) 

where Λ (p x k) is a matrix of constants and f(k x 1) and u (p 

x l) are random vectors. The elements of f are called common 

factors and the elements of u specific or unique factors. We 

shall suppose 

E(f) = 0, V(f) = I. 

E (u)= 0, C(ui, uj,) = O. i j≠  and C(f. u)= O. 

Denote the covariance matrix of u by
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( ) ( )11,..., ppV u diagψ ψ ψ= = . Thus, all of the factors are 

uncorrelated with one another and further the common 

factors are each standardized to have variance 1. It is 

sometimes convenient to suppose that f and u (and hence x) 

are multinormally distributed. Note that, 

1

, 1,...,
k

i ij i i i

i

x f u i pλ µ
=

= + + =∑                         (20) 

so that 

2

1
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ii ij ii
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σ λ ψ
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= +∑                              (21) 

Thus, the variance of x can be split into two parts. First, 

2 2
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i ij
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h λ
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=∑
 

is called the communaliry and represents the variance of xi, 

which is shared with the other variables via the common 

factors. In particular ( )2 ,ij i ic x fλ =  represents the extent to 

which xi depends on the j
th

 common factor. On the other hand 

ijψ  is called the specific or unique variance and is due to the 

unique factor ui; it explains the variability in xi not shared 

with the other variables. The validity of the k-factor model 

can be expressed In terms of a simple condition on∑ . We 

get ψ′= ΛΛ +∑ . The converse also holds. If ∑ can be 

decomposed, then the k-factor model holds for x. However, f 

and u are not uniquely determined by x. Re-scaling the 

variables of x is equivalent to letting y= Cx, where C = 

diag(c,). If the k-factor model holds for x with 

,andψ ψΛ = Λ =  then, 

( )

y C f Cu C

and

V y C C C C C C

µ

ψ

= Λ + +

′= = ΛΛ +∑
              (22) 

Thus the k-factor model also holds for y with factor 

loading matrix CΛ = Λ  and specific variances

( )2

i ijC C diag Cψ ψ ψ= = . Note that the factor loading matrix 

for the scaled variables y is obtained by scaling the factor 

loading matrix of the original variables (multiply the i
th

 row 

of xΛ , by Ci). A similar comment holds for the specific 

variances. In other words, factor analysis is unaffected by a 

re-scaling of the variables. If the k-factor model holds, then it 

also holds if the factors are rotated; that is, if G is a (k x k ) 

orthogonal matrix, then x can also be written as 

( )( )x G Gf u µ′= Λ + +                      (23) 

Since the random vector G'f also satisfies the conditions 

above, we see that the k -factor model is valid with new 

factors G'f and new factor loadings GΛ . Thus, we can also 

write ( )( )as G G ψ′ ′= Λ Λ +∑ ∑ . In fact, for fixedψ , this 

rotation is the only indeterminacy in the decomposition of 

∑ in terms of Λ  and∑ that is, if ψ ψ′∗ ∗′= ΛΛ + = Λ Λ −∑ , 

then G∗Λ = Λ  for some orthogonal matrix G. This 

indeterminacy in the definition of factor loadings is usually 

resolved by rotating the factor loadings to satisfy an arbitrary 

constraint such as 1ψ −′Λ Λ is diagonal, or 1D −′Λ Λ  is 

diagonal. D = diag ( )11, ..., ppσ σ  where in either case, the 

diagonal elements are written in decreasing order, say. Both 

constraints are scale invariant and. except for possible 

changes of sign of the columns, Λ  is then in general 

completely determined by either constraint. Note that when 

the number of factors k – 1, the constraint is irrelevant. Also, 

if some of the iiψ  equal O. then the constraint cannot be 

used. It is of interest to compare the number of parameters in 

∑  when ∑  is unconstrained, with the number of free 

parameters in the factor model. Let s denote the difference. 

At first sight Λ  and ψ  contain pk + P free parameters. 

However, we introduces 4k(k - l ) constraints. Since the 

number of distinct elements of ∑ is ( )1
2

1p p + we see 

that 

( ) ( ){ } ( ) ( )21 1 1 1
2 2 2 2

1 1s p p pk p k k p k p k= + − + − − = − − +  (24) 

Usually it will be the case that s > O. Then s will represent 

the extent to which the factor model offers a simpler 

interpretation for the behavior of x than the alternative 

assumption that V(x) = ∑ . If 0s ≥ and Λ  and ψ  are 

known, then ∑ can be written in term of Λ  andψ , subject 

to the constraint on Λ . We observe a data matrix X whose 

information is summarized by the sample mean x  and 

sample covariance matrix S. The location parameter is not of 

interest here, and we shall estimate it by xµ = . The 

interesting problem is how to estimate Λ  and ψ  and hence 

ψ′= ΛΛ +∑  from S: that is, we wish to find estimates Λ̂  and 

ψ̂  satisfying the constraint ˆ ˆ ψ̂′= ΛΛ +s , at least 

approximately. Given an estimate Λ̂ , it is then natural to set 

2

1

ˆˆ , 1,...,
k

ii ii ii

i

s i pψ λ
=

= − =∑                 (25) 

So that the diagonal equations always hold exactly. We 

shall only consider estimates for which it satisfied and

ˆ 0iiψ ≻ . Setting ˆ ˆ ˆ ψ̂′∑ = ΛΛ + , we get 2

1

ˆ ˆˆ
k

ii ii ii

i

σ λ ψ
=

= +∑  is 

equivalent to the condition 

ˆ
ii iisσ =  

Three cases can occur depending on the value of s. If s < 0 

then it contains more parameters than above. Then, in 

general, we expect to find an infinity of exact solutions for 
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Λ  andψ , and hence, the factor model is not well - defined. 

If s = 0 then it can generally be solved for Λ  and ψ  exactly 

(subject to the constraint on Λ ). The factor model contains as 

many parameters as ∑ and hence offers no simplification of 

the original assumption that V(x) =∑ . However, the change 

in viewpoint can sometimes be very helpful. If s> 0, as will 

usually be the case, then there will be more equations than 

parameters. Thus, it is not possible to solve exactly in terms 

of Λ̂  andψ̂ , we must look for approximate solutions. In this 

case the factor model offers a simpler explanation for the 

behaviour of x than the full covariance matrix. Because the 

factor model is scale invariant, we shall only consider 

estimates of Λ  = Λ , and ψ  =ψ , which are scale invariant. 

It is then convenient to consider the scaling separately from 

the relationships between the variables. Let Y = 
1
2

sHXD
−

 

where ( )11,...,s ppD diag s s= , denote the standardized 

variables so that 

2

1 1

1
0, 1, 1,...,

n n

rj rj

r r

y and y j p
n= =

= = =∑ ∑  

Then Y will have estimated factor loading matrix
1
2

y
ˆ ˆ−Λ = Λs xD   and estimated specific variances 

1
2

yˆ ˆψ ψ−= s xD   and can be written in terms of the correlation 

matrix of x as yˆ ˆ ψ̂′= Λ Λ +y yR . Note that 

2

1

ˆˆ 1 , 1,...,
k

yii yij

i

i pψ λ
=

= − =∑  

so that yψ  is not a parameter of the model any more, but a 

function of Λ . However, R contains p fewer free parameters 

than S so that s, the difference between the number of 

equations and the number of free parameters is still given by 

the p equations for the estimates of the scaling parameters are 

given. Since in practice it is the relationship between the 

variables which is of interest rather than their scaling, the 

data is often summarized by R rather than S. The scaling 

estimates are then not mentioned explicitly, and the estimated 

factor loadings and specific variances are presented in terms 

of the standardized variables. 

2.4.3. First Order Auto Regressive Factor Analysis 

(ARFA(1)) 

First Order Auto – Regressive Factor Analysis ARFA (1). 

The combine model for ARFA (1) variance – covariance 

structure is a heterogeneous structure which neither the 

diagonal nor off diagonal are the same, is given as

( ) ( )1 1L L Dφ φ′− ΛΛ + − . 

2

1 1 2 1 2 1 3 1 3 1 4 1 4 1 5 1 5 1 6 1 6 1 7 1 7

2

2 2 3 2 3 2 4 2 4 2 5 2 5 2 6 2 6 2 7 2 7

2

3 3 4 3 4 3 5 3 5 3 6 3 6 3 7 3 7

2
4 7 4 74 5 4 5 4 6 4 64

2

5 7 5 75 5 6 5 6

2

6 7 6 76

2

7

σ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ
σ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ

σ σ σ λ λ σ σ λ λ σ σ λ λ σ σ λ λ
σ σ λ λσ σ λ λ σ σ λ λσ
σ σ λ λσ σ σ λ λ
σ σ λ λσ

σ

























                        (26) 

The unique solution of the sign 1 2 3 4 5 6 7, , , , , , andλ λ λ λ λ λ λ

is given as 12 13 12 23 13 23
1 2 3

23 13 12

, , ,
r r r r r r

r r r
λ λ λ= = =

e.t.c 

2.5. Goodness of Fit Criteria 

Information criteria are used when comparing or 

examining different models for the same data. Akaike’s 

information criterion (AIC), Burham – Anderson criterion 

(AICC), Bayesian information criterion (BIC), Bozdogan 

Information Criterion (CAIC), Hannan – Quinn Information 

Criterion (HQIC) and the modified Adjusted Schwarz 

Information Criterion (ASIC) shall be used in this research to 

examine the best covariance structure for repeated measures. 

The smaller the fit criterion, the better [14]. The test for 

goodness of fit determines whether a set of observed data 

conforms to a specified probability distribution. 

 

2.6. Adjusted Goodness of Fit Criterion 

Looking at Bayesian Information Criterion and adjust it, 

using the model below 

( ) ( ) ( ){ }/ /k kf k f y kθ θ= ∈Θ              (27) 

Fitted model is given as 

( )ˆ/ kf y θ
 

BIC = ( )ˆ2 ln / 2 lnkf y k nθ− +                  (28) 

We will consider a simple adjustment or justification of 

BIC in this research 

Let y denote the observed data, assume that y is to be 

described using a model Mk selected from a set of candidate 
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models Mk1, Mk2, ---, Mkl. Also, assume that each Mk is 

uniquely parameterized by a vector kθ , where kθ  is an 

element of the parameter space kΘ { }( )1 2, , , .lk k k k∈ − − −  

Let ( )/
k

L yθ denote the likelihood for y based on Mk. 

where ( )/kL yθ  = ( )/
k

f y θ  

Let ˆ
kθ denote the maximum likelihood estimate of kθ

obtained by maximizing ( )/
k

L yθ over kΘ  

Assume that derivatives of ( )/
k

L yθ up to order two exist 

with respect to kθ and are continuous and suitably bounded 

for all kθ ( )k∈ Θ . Let ( ) { }( )1 2, , , lk k k k kπ ∈ − − −

denote a discrete prior over the models Mk1, Mk2, ---, Mkl. 

( )/k kθ denote a prior on kθ given model Mk 

{ }( )1 2, , lk k k k∈ − − − . 

From the above, we are going to applying Bayes’ theorem, 

the joint posterior of Mk and kθ can be written as 

( )( ) ( ) ( ) ( )
( )
/ /

, /
k k

k

k g k L y
h k y

m y

π θ θ
θ =                (29) 

m(y) denotes the marginal distribution of (y). 

The posteriori probability for Mk is given by
 

( ) ( ) ( ) ( ) ( )1
/ / / .k k kp k y m y k L y g k dπ θ θ θ−= ∫                                                       (30) 

Consider minimizing -2lnP(k/y) as opposed to maximizing P(k/y). 

We have 

( ) ( ){ } ( ){ } ( ) ( ){ }2ln / 2ln 2ln 2ln / /k k kp k y m y k L y g k dπ θ θ θ− = − − ∫                                    (31) 

m(y) is constant with respect to k; thus, for the purpose of model selection, the term can be discarded. Hence, we obtain 

( ) ( ){ } ( ){ }
( )

2ln / 2 ln 2 ln /

/

k kp k y k L k d

s k y

α π θ θ− − −

≡
∫

                                                  (32) 

We can use the integral above in order to obtain the approximation of the above term by taking a second order Taylor series 

expansion of the log-likelihood about ˆ
kθ as 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2ˆ ˆln / ln /1ˆ ˆ ˆ ˆln / ln /

2

θ θ
θ θ θ θ θ θ θ θ

θ θ θ

 ∂ ∂′ ′  ≈ + − + − −
′ ∂ ∂ ∂

 

k k

k k k k k k k k

k k k

L y L y
L y L y  

( ) ( ) ( ) ( )1ˆ ˆ ˆ ˆln / ,
2

θ θ θ θ θ θ′  = − − Ι −
 k k k k k kL y n y                                               (33) 

where 

( ) ( )2 ˆln /1ˆ ,
k

k

k k

L y
y

n

θ
θ

θ θ

∂
Ι = −

′∂ ∂
 is the average observed fisher information matrix 

Thus, 

( ) ( ) ( ) ( ) ( )1ˆ ˆ ˆ ˆ/ / exp ,
2

θ θ θ θ θ θ θ ′  ≈ − − Ι −   
k k k k k k kL y L y n y                                         (34) 

We therefore have the following approximation for our integral as 

( ) ( ) ( ) ( ) ( ) ( )1ˆ ˆ ˆ/ / / exp , /
2

θ θ θ θ θ θ θ θ θ ′  ≈ − − Ι   
∫ ∫k k k k k k k k kL y g k d L y n y g k d                    (35) 

Consider the evaluation of 
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( ) ( ) ( )1 ˆ ˆexp , /
2

θ θ θ θ θ ′  − − Ι   
∫ k k k k kn y g k d using the non-informative prior ( )/ 1kg kθ =  

We obtain 

( ) ( ) ( ) ( )( ) ( )
1
2

21 ˆ ˆ ˆexp , / 2 ,
2

θ θ θ θ θ π θ
− ′  − − Ι = Ι   

∫
k

k k k k k kn y g k d n y                            (36) 

We therefore have 

( ) ( ) ( )( )( ) ( )
1
2

2ˆ ˆ/ / / 2 ,θ θ θ θ π θ
−

≈ Ι∫
k

k k k k kL y g k d L y n y
 

( )( )( ) ( ) ( )
1
2

2 2ˆ ˆ/ 2 ,θ π θ− −
= Ι

k k

k kL y n y
 

( )
( )

( )
12
22ˆ ˆ/ ,

πθ θ
− = Ι 

 

k

k kL y y
n

                                                                     (37) 

The preceding can be viewed as a variation on the laplace method of approximating the integral 

 

Then, going back to our S(k/y), we can write 

 

( )
( )

( )
12
22ˆ ˆ2 ln / ,

πθ θ
−  = − Ι  

   

k

k kL y y
n

 

( ) ( )2 2ˆ ˆ2 ln / ln ln ,
2

θ θ
π

  − + + Ι  
  

k k

n
L y k y                      (38) 

Ignoring terms that is bounded as the sample size grows to infinity, we obtain our adjusted model as 

 

 

                                                                  (39) 

3. Analysis 

Table 1. Mauchly's Test of Sphericity. 

Within Subject Effects Mauchly’s W Approx. Chi-Square df Sig. 
Epsilonb 

Greenhouse-Geisser Huynh-Feldt Lower-bound 

WEEKS .004 440.232 20 .000 .493 .544 .167 

Table 1 shows that the assumption of Sphericity has not been met, since the Sig. value is 0.00 which is less than 0.05, so the 

null hypothesis that the variances of the difference between levels were significantly the same was rejected. 

 

( ) ( )/ / .k k kL y g k dθ θ θ∫

( ) ( ){ }
( ) ( ){ }

( ){ }

/ 2 ln

2 ln / /

2 ln

k k k

s k y k

L y g k d

k

π

θ θ θ

π

= −

= −

≈ −

∫

( ){ }2 ln kπ= −

( )2 ˆln ,k yθΙ

( ) ( ) ( )ˆ/ 2 ln / ln lnks k y L y k nθ≈ − +

( ) ( )ˆ2 ln / ln lnkASIC L y k nθ= − +

( ) ( )ˆ2ln / ln lnkASIC L y k nθ= − +
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Table 2. Fitting Criteria Results for Covariance Structures Covariance Structure. 

Information Criteria UN CS HF AR (1) ARH (1) 

AIC 1560.159 1609.557 1597.026 1609.557 1487.235 

AICC 1581.812 1609.676 1598.541 1609.676 1488.750 

BIC 1634.202 1614.846 1618.181 1614.846 1508.390 

HQIC 1548.753 1610.170 1594.866 1610.170 1485.075 

CAIC 1662.202 1616.846 1626.181 1616.846 1516.390 

Covariance Structures Cont. 

Information Criteria CSH TOEP TOEPH ANTE(1) UNC 

AIC 1621.557 1619.557 1497.236 1497.235 1527.235 

AICC 1623.073 1620.723 1501.280 1501.279 1548.888 

BIC 1642.712 1638.067 1531.613 1531.612 1601.277 

HQIC 1619.397 1617.859 1492.764 1492.763 1515.829 

CAIC 1650.390 1645.067 1544.613 1544.612 1629.277 

 

Table 2 shows the Information criteria for ten different 

covariance structures in mixed model approach. According to 

AIC, AICC, BIC, HQIC and CAIC fitting criteria, 

Heterogeneous first order autoregressive ARH (1) was the 

best covariance structure (since it is the one that provide the 

most smallest value on both the HQIC, AIC and AICC) then 

followed by first order ante-dependence ANTE(1), then 

Heterogeneous toeplizt (TOEPH), then unstructured 

correlation (UNC), then unstructured (UN), followed by 

Huynh-Feldt (HF), then followed by compound symmetry 

(CS) and first order auto-regressive AR(1), then toeplizt 

(TOEP) while the worst one was Heterogeneous compound 

symmetry (CSH). ARH (1) and ANTE(1) gave informations 

about growth-development mechanism and consecutive 

variation at weight performances of the broilers in grams 

over trial time. This indicates that Heterogeneous first order 

autoregressive and first order ante dependence are the best 

covariance structures for this research and was selected for 

further examination with the modified structures and 

information criteria still in this research. 

Table 3. Information Criteria for ARFA(1). 

ASIC HQIC AIC AICC BIC CAIC 

1131.094 1131.095 1137.567 1138.967 1174.722 1151.864 

Table 3 shows the result of first order auto regressive 

factor analysis ARFA(1) using six different information 

criteria. From the result above it indicates that adjusted 

Schwarz information criteria (ASIC) was the best 

information criteria, because it gives the smallest value as 

1131.094, then followed by Hannan – Quinn information 

criteria (HQIC) as 1131.095, then akaike information criteria 

(AIC) as 1137.567 while Bayesian information criteria (BIC) 

as 1174.722 is the worst. 

Table 4. Summary of Covariance Structures with Best two Information Criteria. 

COVARIANCE STRUCTURES No. of p n RESTRICTED LOG LIKELIHOOD HQIC ASIC 

UN 28 105 1504.159 1548.753 1547.215 

CS 2 105 1605.557 1610.17 1608.632 

HF 8 105 1581.026 1594.866 1593.328 

AR(1) 2 105 1605.557 1610.17 1608.632 

ARH(1) 8 105 1471.235 1485.075 1483.537 

CSH 8 105 1605.557 1619.397 1617.859 

TOEP 7 105 1605.557 1617.859 1616.321 

TOEPH 13 105 1471.235 1492.763 1491.226 

ANTE(1) 13 105 1471.235 1492.763 1491.225 

UNC 28 105 1471.235 1515.829 1514.291 

ARFA(1) 14 105 1109.567 1131.095 1131.094 

 

Table 4 shows the summary of eleven covariance 

structures, each attached with the parameter numbers using 

seven repeated measure data. It was clearly indicates that 

ARFA(1) was the best covariance structures, then followed 

by ARH(1), then followed by ANTE(1) and TOEPH, while 

CSH was the worst in this research. This happen as the result 

of violation of sphericity assumption. Also in terms of 

information criteria ASIC gives the lowest values throughout, 

such it was the best information criteria for comparison 

covariance structures. 

4. Conclusion 

In this research, The sphericity assumption was violated 

according to mauchly statistic result (P<0.05) and according 

to information criteria AIC, AICC, BIC, HQIC and CAIC 

Heterogeneous first order autoregressive ARH (1) was the 

best covariance structure (since it is the one that provide the 

most smaller value on both the HQIC, AIC, BIC, CAIC and 

AICC) then followed by first order ante-dependence 
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ANTE(1), then Heterogeneous toeplizt (TOEPH), then 

unstructured correlation (UNC), then unstructured (UN), 

followed by Huynh-Feldt (HF), then followed by compound 

symmetry (CS) and first order auto-regressive AR(1), then 

toeplizt (TOEP) while the worst one was Heterogeneous 

compound symmetry (CSH). ARH (1) and ANTE(1) give 

information about growth-development mechanism and 

consecutive variation at weight performances of the broilers 

in grams over trial time. This indicates that Heterogeneous 

first order autoregressive and first order ante dependence are 

the best covariance structures for this research and was 

selected for further examination with the modified structure 

also in this research as the best comparison structures using 

information criteria. Hence when examining it with the 

modified structure ARFA(1) was the best structure while 

ASIC gives the smallest values throughout, then followed by 

HQIC. The overall result indicates ARFA(1) as the best 

covariance structure, followed by ARH(1) while CSH was 

the worst structure in this research and ASIC gives the 

smallest values, followed by HQIC as the best information 

criteria for examination of covariance structures. SPSS 

version 23.6 and R version 3.4.0 was used for the analysis. 
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