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Abstract: Understanding and forecasting the behavior of volatility in stock market has received significant attention among 

researchers and analysts in the last few decades due to its crucial roles in financial markets. Portfolios managers, option 

traders, and market makers are all interested in the possibility of forecasting, with a reasonable level of accuracy. This study 

examined the volatility on the Nigeria stock market by comparing two Markov regime switching Autoregressive (MS-AR) 

Models estimated at different lagged values using the Nigeria stock exchange monthly All Share Index data from 1988 to 2018 

in the Central Bank of Nigeria (CBN) Statistical Bulletin. It was found that factors like financial crisis, information flow, 

trading volume, economical aspects and investor’s behavior are the causes of volatility in the stock market. The results and 

forecasts obtained from the statistical analysis in this research showed that the stock market will experience a steady growth in 

2020 and beyond. Also, the stock market is experiencing fluctuations in the price indices which show that over the years, 

investors have been exposed to some certain risks in the time past. We therefore recommended that researchers should focus 

more attention in developing robust statistical model that will reflect and continue to monitor future trends and realities. 
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1. Introduction 

The importance of understanding and forecasting the 

behavior of volatility in stock market has received significant 

attention among researchers and analysts in the last few 

decades due to its crucial roles in financial markets. 

Portfolios managers, option traders, and market makers are 

all interested in the possibility of forecasting, with a 

reasonable level of accuracy. Volatility prediction is a critical 

task in asset valuation and risk management for investors and 

financial intermediaries. The price of almost every derivative 

security is affected by swings in volatility. 

A financial market often changes patterns over time. It can 

also exhibit dramatic changes due to unexpected events such 

as natural hazards and financial crisis. A widely accepted fact 

is that financial markets behave quite differently in different 

economic situations. Traders often adjust their portfolios 

according to market trend, which is defined as the long term 

tendency of a financial market to move in a certain direction. 

A financial market is traditionally classified into 3 categories: 

bearish, bullish and neutral. The first two terms describe 

overall market gain and loss respectively. The term neutral 

market is used when no strong upward or downward trend is 

observed. Several benefits can be derived from generating 

accurate forecast of volatility. Volatility forecast is a key 

indicator in assessing the performance of the stock market in 

order for both indigenous and foreign speculators to make 

accurate speculations and decisions on investments. 

The issue with volatility of stock market price refers to the 

fluctuations that may be observed in stock market prices over 

time. The major reason for the ups and downs in the stock 

market may be traced to macroeconomic instability. Since the 

stock market operate in a macroeconomic environment, it is 

therefore necessary that the environment must be an enabling 

one in order to realize its full potentials. The problem with 

forecasting the stock market price is that the return 

distribution can change considerably over time. Volatility is 

an extremely complex thing to forecast because of the 

inherent instability of the variable (variability of the random). 

Volatility forecast sometimes may be uncertain, since it is 

just a mere projection based on some econometric technique 

in most cases. 
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The Markov regime switching model is a popular 

approach, much on behalf of the way it takes the shifts in the 

time series behavior into account and the way it is able to 

capture more complex dynamic patterns. What separates the 

Markov regime switching model from other switching 

models is that the switching mechanism is controlled by an 

unobservable variable that follows a hidden Markov chain. 

By Markov properties, the current value of the variable 

depends only on its immediate past value. This means that a 

structure in the series may prevail for a random period of 

time, before being replaced by another structure when a 

switching takes place. This way, the Markov regime 

switching model is able to capture more complex dynamic 

patterns. [1] stated that a way to model non-linear dynamic 

patterns in time series such as breaks or asymmetry is 

through the use of Markov switching models. It has been 

found that financial time series exhibit some formalized facts 

which can advantageously be reproduced by a hidden 

Markov model. This has made the Markov regime switching 

model one of the most popular nonlinear time series models 

in the literature [2, 3, 4, 5]. Investors are skeptical especially 

when it comes to investment, as they require that sense of 

security that they will attain a return on their investment. 

Hence, the need of a framework where the potential investors 

has access to relevant information pertaining to the stock 

market, so that they are able to conduct their personal 

research and choose the optimal stocks in the market. 

According to [6], stock market indexes provide guidance 

concerning the performance of the overall stock market. 

Therefore, in this study, volatility assessment and forecast are 

carried out on All Share Index (ASI) of the Nigeria Stock 

Exchange (NSE) in order to examine the performance of the 

Nigeria Stock Market. The All Share Index (ASI) on the 

Nigeria Stock Exchange (NSE) is used as proxy for stock 

market prices in order to assess volatility by measuring the 

trends and thereby examining the performance of the Nigeria 

Stock Market. This research will examine this issue from the 

perspective of the Markov regime switching model. A 

number of studies have used such an approach in volatility 

forecasting and have found that particularly for inherent 

instability of the variable (variability of the random), the 

regime switching models do provide a good forecasting 

ability. The broad objective of this study is to assess the 

volatility performance of the Nigeria Stock Market in order 

to determine the basis for examining its forecast. 

2. Data 

The data used for this research was sourced from the 

Central Bank of Nigeria statistical bulletin [7]. 

3. Method 

This section introduces and explains which statistical tool 

was deployed in analyzing data and upon what frame work 

was the conclusion based on. Statistical tools like time series 

will be deployed in analyzing the data set with the aid of 

statistical package E-Views also the graphical aspect. 

3.1. Nonlinear Time Series 

Traditional time series analysis is based on assumptions of 

linearity and stationarity. However, there has been a growing 

interest in studying nonlinear and non-stationary time series 

model in many practical problems. The first and the simplest 

reason for this is that many real world problems do not 

satisfy the assumptions of linearity and/or stationarity. For 

example, the financial markets are one of the areas where 

there is a greater need to explain behaviors that are far from 

being even approximately linear. Therefore, the need for the 

further development of the theory and application for 

nonlinear models is essential. In general time series analysis, 

it is known that there are a large number of nonlinear features 

such as cycles, asymmetries, bursts, jumps, chaos, thresholds, 

heteroscedasticity and mixtures of these have to be taken into 

account. A problem arises directly from a suitable definition 

of nonlinear model because not every model is linear. This 

class clearly encompasses a large number of possible choices. 

Furthermore, forecasting the future values of an observed 

time series is an important phenomenon for many real world 

problems. It provides a good basis for production planning 

and technical decisions. Forecasting means extrapolating 

observations available up to time t to predict observations at 

future times. Forecasting methods are mainly classified into 

quantitative techniques, which are based on unscientific and 

mathematical and/or statistical models respectively. The 

quantitative techniques are more important than qualitative 

techniques for future planning. 

3.2. Test of Nonlinearity 

Given the wide range of nonlinear time series models 

available and the inherent flexibility of these models, the 

possibility of getting a spuriouslygood fit to any time series 

data set is very high. Therefore it is usually recommendedto 

perform a test of linearity against nonlinearity before 

buildinga possibly complex nonlinear model. 

A popular test for nonlinearity, the BDS test, which has 

been found to have power against a wide range of nonlinear 

time series models, will be used to determine whether a 

nonlinear model is suitable for the data. There are many other 

types of nonlinearity tests that are developed to test against 

specific nonlinear models. 

BDS Test for Nonlinearity 

The BDS test developed by [8] was originally designed to 

test for the null hypothesis of independent and identical 

distribution (iid) for the purpose of detecting non-random 

chaotic dynamics. However, many studies have shown that 

BDS test has power against a wide range of linear and 

nonlinear alternatives [9]. 

Linear vs. nonlinearity choice can be made partly on 

statistical grounds deciding whether a linear specification is 

sufficient to describe all of the most important features of the 

data at hand. 

Thus, the null and alternative hypothesis of the BDS test 

for detecting nonlinearity is as follows; 
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��: The series are linearly dependent 

��: The series are not linearly dependent. 

The BDS test is based on an integral correlation of the 

series and is defined as follows; 

����.
��
 = √� ����
������

��.���
                   (1) 

Where M is the surrounded points of the space with m 

dimension, r denotes the radius of the sphere centered on the 

��, � is the constant and ��.
��
 is the standard deviation of 

√�����
 − �����
. 
3.3. Selection Criteria 

It is not all that possible to identify the parameter p of the 

Markov Switching Autoregressive (MS-AR) process by 

visualization. The most common model selection criteria are 

the AIC, BIC. Using the AIC and BIC criterion, we select the 

Markov Switching Autoregressive model with the lowest 

value of the AIC or BIC. 

3.3.1. The Akaike Information Criteria (AIC) 

The Akaike information criterion (AIC) was the first 

selection criterion to gain widespread acceptance. AIC was 

introduced in 1973 by [10] as an extension to the maximum 

likelihood principle. Akaike’s seminal idea was to combine 

estimation and structural determination into a single 

procedure. Given a family of candidate models of various 

structures, each model is fit to the data through maximum 

likelihood. An AIC is computed based on each model fit. The 

fitted candidate model corresponding to the minimum value 

of AIC is then selected; one is hoping to identify the fitted 

model that is closest to the generating model. The AIC is 

defined by 

��� = −2 log�$%&'$%ℎ))*
 + 2�,
         (2) 

3.3.2. Bayesian Information Criterion (BIC) 

The Bayesian information criterion (BIC) also known as 

the Schwarz information criterion (SIC) is related to the 

Bayes factor and useful for model comparison in its own 

right. 

The BIC of a model is defined as 

��� = −2 ln�$%&'$%ℎ))*
 + �& + & ln�,

        (3) 

3.4. Markov Regime Switching Model 

A basic time series model that will be used in describing 

the Markov Regime Switching model is the Autoregressive 

Process (AR) defined below: 

Definition: Autoregressive Processes AR (p) 

The idea behind the autoregressive models is to explain the 

present value of the series, �. , by a function of the past 

values, �.��, �.�0, . . . , �.�1. 
An autoregressive process of order p is written as 

�. = 2��.�� + 20�.�0 +⋯+21�.�1 + 4.         (4) 

where {4.}  is white noise, i.e., {4.}~8,�0, �0
  and 4.  is 

uncorrelated with 

�: for each s < t. 

Suppose that the typical historical behavior could be 

described with a first-order autoregression, 

;. = <� + 2;.�� + 4. ,                        (5) 

with 4. 	~	,�0, �0
, which seemed to adequately describe the 

observed data for > = 1,2, … , >�. 
Suppose that at date >� there was a significant change in 

the average level of the series, so that we would instead wish 

to describe the data according 

;. = <0 + 2;.�� + 4.,                       (6) 

For > = >� + 1, >� + 2,… 

This fix of changing the value of the intercept from 

<�	>)	<0 might help the model to get back on track with better 

forecasts, but it is rather unsatisfactory as a probability law 

that could have generated the data. We surely would not want 

to maintain that the change from <�	>)	<0  at date >�  was a 

deterministic event that anyone would have been able to 

predict with certainty looking ahead from date > = 1. Instead 

there must have been some imperfectly predictable forces 

that produced the change. Hence, rather than claim that 

expression (5) governed the data up to date >� and (6) after 

that date, what we must have in mind is that there is some 

larger model encompassing them both, 

;. = <:A + 2;.�� + 4.,                         (7) 

where B. is a random variable that, as a result of institutional 

changes, happened in our sample to assume the value B. = 1 

for > = 1,2, … , >�  and B. = 2  for > = >� + 1, >� + 2,… . A 

complete description of the probability law governing the 

observed data would then require a probabilistic model of 

what caused the change fromB. = 1 to B. = 2. The simplest 

such specification is that B. is the realization of a two-state 

Markov chain with 

Pr�B. = E|B.�� = %, B.�0 = &,… , ;.��, ;.�0, … 
 =
Pr�B. = E|B.�� = %
 = G�H .             (8) 

Assuming that we do not observe B. directly, but only infer 

its operation through the observed behavior of ;. , the 

parameters necessary to fully describe the probability law 

governing ;.  are then the variance of the Gaussian 

innovation �0 , the autoregressive coefficient 2 , the two 

intercepts <� and <0, and the two state transition probabilities, 

G�� and G00. 

The specification in (8) assumes that the probability of a 

change in regime depends on the past only through the value 

of the most recent regime, though, as noted below, nothing in 

the approach described below precludes looking at more 

general probabilistic specifications. But the simple time-

invariant Markov chain (8) seems the natural starting point 

and is clearly preferable to acting as if the shift from <� to <0 

was a deterministic event. Permanence of the shift would be 

represented by G00 = 1 , though the Markov formulation 

invites the more general possibility that G00 < 1. Certainly in 

the case of business cycles or financial crises, we know that 

the situation, though dramatic, is not permanent. 
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Furthermore, if the regime change reflects a fundamental 

change in monetary or fiscal policy, the prudent assumption 

would seem to be to allow the possibility for it to change 

back again, suggesting that G�� < 1 is often a more natural 

formulation for thinking about changes in regime than 

G00 = 1. 

The probability of switching is captured in the matrix P 

known as a transition matrix. 

J = KG�� G�0
G0� G00L                                (9) 

Where G�� + G�0 = 1 and G0� + G00 = 1 

Suppose that we observe ;.  directly but can only make an 

inference about the value of B.  based on what we see 

happening with ;. . This inference will take the form of two 

probabilities 

MH. = Pr	�B. = E|Ω.; P)                      (10) 

for E = 1,2, 
where these two probabilities sum to unity by construction. 

Here Ω. = {;. , ;.��, ;�, ;�}  denotes the set of observations 

obtained as of date > , and P  is a vector of population 

parameters, which for the above example would be P =(�, 2, <�, <0, G��, G00)Q, and which for now we presume to be 

known with certainty. The inference is performed iteratively 

for > = 1,2, … , R with step > accepting as input the values 	M�,.�� = Pr	(B.�� = %|Ω.��:; P)                 (11) 

for % = 1,2  and producing as output (10). The key 

magnitudes one needs in order to perform this iteration are 

the densities under the two regimes, 

SH. = T(;.|B. = E, Ω.��; P) = �√0U� exp	K− (YA��Z�[YA\�)]0�] L, (12) 

for E = 1,2. 
Specifically, given the input (11) we can calculate the 

conditional density of the >th observation from T(;.|Ω.��; P) = ∑ ∑ G�HM�,.��SH.0H_�0�_� 	       (13) 

and the desired output is then 

MH. = ∑ 1`Za`,A\�bZA]̀c�d(YA|eA\�;f)                             (14) 

As a result of executing this iteration, we will have 

succeeded in evaluating the sample conditional log likelihood 

of the observed data logT(;�, ;0 , … , ;g|;�; P) = ∑ logT(;.|Ω.��; P)g._�  (15) 

for the specified value of θ. An estimate of the value of θ can 

then be obtained by maximizing (15) by numerical 

optimization. 

Several options are available for the value M��  to use to 

start these iterations. If the 

Markov chain is presumed to be ergodic, one can use the 

unconditional probabilities 

M�� = Pr(B� = %) = ��1ZZ0�1``�1ZZ.	               (16) 

Other alternatives are simply to set M�� = 1/2 or estimate M�� itself by maximum likelihood. 

The calculations do not increase in complexity if we 

consider an (� × 1) vector of observations ;.  whose density 

depends on N separate regimes. Let Ω. = {;. , ;.��, … , ;�} be 

the observations through date t, P be an (N ×N) matrix whose 

row j, column i element is the transition probability G�H , S. be 

an (N × 1) vector whose jth element T(;.|B. = E, Ω.��; P) is 

the density in regime j, and Mj.|. an (N × 1) vector whose jth 

element is Pr	(B. = E|Ω. , P). Then (13) and (14) generalize to T(;.|Ω.��; P) = 1QkPMj.�.|.�� ⊙ S.m	             (17) 

Mj.|. = naoA\A|A\�⊙bAd(YA|eA\�;p) 	                   (18) 

where 1 denotes an (N × 1) vector all of whose elements are 

unity and ⊙  denotes element-by- element multiplication. 

There further is no requirement that the elements of S.  be 

Gaussian densities or even from the same family of densities. 

One is also often interested in forming an inference about 

what regime the economy was in at date t based on 

observations obtained through a later date T, denoted Mj.|g . 

These are referred to as “smoothed” probabilities. The 

calculations in (17) and (18) remain valid when the 

probabilities in P depend on lagged values of ;.  or strictly 

exogenous explanatory variables. However, often there are 

relatively few transitions among regimes, making it difficult 

to estimate such parameters accurately, and most applications 

have assumed a time-invariant Markov chain. For the same 

reason, most applications assume only N = 2 or 3 different 

regimes. 

Nturns out also to be a natural device for handling 

transition probabilities that are functions of observable 

variables. It is natural to want to test the null hypothesis that 

there are N regimes against the alternative of N + 1, for 

example, when N = 1, to test whether there are any changes 

in regime at all. Unfortunately, the likelihood ratio test of this 

hypothesis fails to satisfy the usual regularity conditions, 

because under the null hypothesis, some of the parameters of 

the model would be unidentified. For example, if there is 

really only one regime, the maximum likelihood estimate Ĝ�� 

does not converge to a well-defined population magnitude, 

meaning that the likelihood ratio test does not have the usual r0  limiting distribution. To interpret a likelihood ratio 

statistic, one needs to rely on generic tests of the hypothesis 

that an N-regime model accurately describes the data, though 

these tests are not designed for optimal power against the 

specific alternative hypothesis of N + 1 regimes. Other 

alternatives are to use Bayesian methods to calculate the 

value of N implying the largest value for the marginal 

likelihood or to compare models on the basis of their ability 

to forecast. 

A specification where the density depends on a finite 

number of previous regimes, T(;.|B. , B.��, … , B.��, Ω.��; P) 
can be recast in the above form by a suitable redefinition of 

regime. For example, if B.  follows a 2-state Markov chain 
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with transition probabilities Pr	(B. = E|B.�� = %) and s = 1, 

one can define a new regime variable B.∗  such that T(;.|B.∗, Ω.��; P) = T(;.|B. , B.��, … , B.��, Ω.��; P)  as 

follows: 

B.∗ = u1	vℎ'w	B. = 1	xw*	B.�� = 12	vℎ'w	B. = 2	xw*	B.�� = 13	vℎ'w	B. = 1	xw*	B.�� = 24	vℎ'w	B. = 2	xw*	B.�� = 2              (19) 

Then B.∗  itself follows a 4-state Markov chain with 

transition matrix 

P∗ = {G�� 0 G�� 0G�00 0 G�0G0� 0 0G0�0 G00 0 G00|                  (20) 

More problematic are cases in which the order of 

dependence m grows with the date of the observation t. Such 

a situation often arises in models whose recursive structure 

causes the density of ;.  given Ω.�� to depend on the entire 

history ;.��, ;.�0, … , ;� as is the case in ARMA, GARCH, or 

state-space models. 

3.5. Transition Probabilities 

A finite homogeneous Markov Chain with m-states has 

transition probabilities: J�H = Pr{�} = E|�}�� = %}                      (21) 

where (%, E = 1,… ,s). 
If J�H > 0, then state �� is said to communicate with state �H  such that a two way communication is possible, and if 

additionally J�H > 0 , then �� ↔ �H . Transition probabilities 

form an s ×s array that can be combined into a transition 

matrix T. If ∑ G�H = 1�H_� , then T is said to be row stochastic. 

For this study, a two state or regime process was assumed 

and the probabilities of the Markov process were represented 

in matrix form as follows: �J(�. = 1) J(�. = 2)� =�J(�.�� = 1) J(�.�� = 2)� �G�� G�0G0� G00�     (22) 

Where G�� + G�0 = 1, T)�	% = 1,2 and R = �G�� G�0G0� G00� 

The specification in equation (22) assumes that the 

probability of a change in regime depends on the past only 

through the value of the most recent regime. 

3.6. Expected Duration 

We can determine the duration of each regime by using the 

diagonals elements of equation (9). These diagonal elements 

denote the transition probabilities of being in the same state 

both in the current and previous period. Using this 

information, we can find the average length of which a 

particular regime lasts on average. 

Let �H  denote the number of periods the system is in state 

j. The probability to stay k periods in state j is given as 

follows: Prk�H = &m = GHH���(1 − GHH)                    (23) 

This implies the expected duration of state j is given by: �k�Hm = ∑ &	Pr	(�H = &)��_�                      (24) 

�k�Hm = ���1ZZ                                 (25) 

3.7. Forecasting 

Forecasts for one period or several periods into the future 

with the parameters for a tentative model have been selected. 

The principal objective of developing a time series model for 

a variable is to generate post sample period forecast for the 

same variable. The ultimate test for any model is whether it is 

capable of predicting future events accurately or not. The 

forecast accuracy for the several Markov Switching 

Autoregressive models (MS-AR) were chosen based on the 

values of some error metrics, namely MSE, RMSE, MAE, 

MAPE. 

However, in this study three different error metrics are 

considered for the evaluation of forecasting models. They are 

root mean square error (RMSE), mean absolute error (MAE), 

mean square error (MSE). 

a) Root Mean Square Error (RMSE) 

Root mean Square Error (RMSE) is square root of average 

of sum-squared errors and is given by following formula: 

���� = ��}∑ k;H − ;�Hm0}H_�               (26) 

There is one problem with RMSE and it is that they may 

be close to 0 if large positive and negative errors cancel out 

each other. RMSE gives high weight to the large errors and 

are generally useful where large errors are not of importance. 

RMSE are more sensitive than other metrics to the infrequent 

large errors as the squaring process gives large weight to very 

large errors [11]. 

b) Mean Absolute Error (MAE) 

The problem of RMSE, canceling out of large positive and 

negative errors can be avoided by using Mean Absolute 

Errors. In average, MAE weights all the differences equally. 

��� = �}∑ �;H − ;�H�}H_�                   (27) 

MAE and RMSE can be used together to study the 

variation in the errors in a set of forecasts. RMSE are always 

larger or equal than MAE. 

c) Mean Square Error (MSE) 

The sum of the squared forecast errors for each of the 

observations divided by the number of observations. It is an 

alternative to the mean absolute deviation (MAE), except that 

more weight is placed on larger errors. While MSE is popular 

among statisticians, it is unreliable and difficult to interpret. 

[12] found no empirical support for the use of the MSE or 

RMSE in forecasting. Fortunately, better measures are 

available [13]. 
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��� = �}∑ (;� − ;��)0}�_�                        (28) 

4. Statistical Data Analysis and 

Discussion 

This section presents the statistical analysis of our 

findings. 

4.1. Time Series Graph of the Raw Data 

Time series plots which display observations on the y-axis 

against equally spaced lag on the x-axis used to evaluate 

patterns and behaviors in data over time is displayed in 

Figure 1 below. The data used for this research was sourced 

from Central Bank of Nigeria Statistical Bulletin. 

 

Figure 1. Time series graph of the All Share Index (ASI) on the Nigeria 

Stock Exchange (NSE): 1988 to 2018. 

Volatility in the Nigeria stock exchange has been 

experiencing instability over the years as presented in Figure 

1 above. Clearly, Figure 1 depicts trend in the NSE All Share 

Index series from 1988 to 2018. The series, the prices were 

below 5,000 from 1988 to around 1994; it went up and 

became stable within 5,000 and 10,000 around 1995 to 2001. 

Again it went beyond 10,000 in 2002 and kept going on an 

increase at a steady rate until in 2006 when it increased 

explosively up till the peak around 60,000, and declined 

explosively to 20,000 in 2008. Again it became stable when 

the prices were within 20,000 and 30,000 from 2008 until 

around 2013 when it started going on an increase beyond 

30,000 up till 2017 where it went beyond 40,000 and dropped 

to around 30,000 in 2018. 

 

Figure 2. Histogram and Descriptive Statistics for All Share Index (ASI) 

Monthly Data: 1988 to 2018. 

Before the estimation of the Markov switching models, a 

nonlinearity test might still be necessary to describe the 

important features of the data at hand. Table 1 below, reports 

the results of the nonlinearity test developed by [8] on the All 

Share Index (ASI) data from the Nigeria Stock Exchange 

(NSE). 

4.2. BDS Test for Nonlinearity 

Table 1. Parameter Estimates of BDS Test for Nonlinearity. 

Dimension BDS Statistics Std. Error P-value 

2 0.186569 0.003026 0.0000 

3 0.314866 0.004789 0.0000 

4 0.401217 0.005676 0.0000 

5 0.457852 0.005887 0.0000 

6 0.495708 0.005650 0.0000 ��: The series are linearly dependent. ��: The series are not linearly dependent. 

The BDS test results in Table 1 above indicates that there 

is nonlinearity effect in the All Share Index of the Nigeria 

Stock Exchange. Table 1 shows that the probabilities are less 

than 5%, thus implying a rejection of the null hypothesis that 

the series is linearly dependent. The results in Table1 suggest 

that All Share Index of the Nigeria Stock Exchange are 

nonlinear and unstable which is an indication of the dynamic 

behavior of financial time series data hence the data can be 

estimated using a nonlinear model. 

Next, this study proceeds with the estimation of the 

Markov switching model (MS-AR). However, before 

obtaining the final form of the model used in this research, 

two models were estimated at different lagged values of the 

All Share Index on the Nigeria Stock Exchange. 

MS (2)-AR (1) 

;. � �<:A + 2�;.�� + 4.B. � 1<:A + 2�;.�� + 4.B. � 2                 (29) 

Where B. denotes the regime/state 

Table 2. Parameter Estimates For MS (2)-AR (1) Model. 

Regime 1 

Variable Coefficient Std. Error P-value 

C 2594.267 490.0558 0.0000 

LOG (SIGMA) 7.651628 0.046812 0.0000 

AR (1) 0.988384 0.001973 0.0000 

Regime 2 

Variable Coefficient Std. Error P-value 

C 2734.858 477.1843 0.0000 

LOG (SIGMA) 3.980784 0.094791 0.0000 

AR (1) 0.988384 0.001973 0.0000 

Akaike’s Information Criterion (AIC)= 16.09972 

;�. � � 2594.267 + 0.988384;.�� + 4.B. � 12734.858 + 0.988384;.�� + 4.B. � 2    (30) 

From the estimated Markov switching model above, it can 

be seen that all the model parameters are significant at the 

5% level since their P-value (0.0000) < 0.05, this is an 
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indication of a good model. 

At the first regime, the estimated mean of the model is 

2594.267 with a sigma of 20.7992 which are both significant 

with P-value of (0.0000) each, while at the second regime, 

the estimated mean of the model switched to 2734.858 with a 

sigma of 10.8209 which are also both significant at the 5% 

level of significance. 

In common is the Autoregressive AR (1) parameter, 2o� = 

0.988384 with p-value (0.000) which is also significant at the 

5% level of significance. 

MS (2)-AR (2) 

;. = �<:A + 2�;.�� + 20;.�0 + 4.B. = 1<:A + 2�;.�� + 20;.�0 + 4.B. = 2       (31) 

Where B. denotes the current regime 

Table 3. Parameter Estimates For MS (2)-AR (2) Model. 

Regime 1 

Variable Coefficient Std. Error P-value 

C 5500.129 395.5156 0.0000 

LOG (SIGMA) 7.728381 0.053745 0.0000 

AR (1) 

AR (2) 

1.306792 

-0.299854 

0.050581 

0.051198 

0.0000 

0.0000 

Regime 2 

Variable Coefficient Std. Error P-value 

C 165.6161 235.2329 0.4841 

LOG (SIGMA) 5.498214 0.057957 0.0000 

AR (1) 

AR (2) 

1.306792 

-0.299854 

0.050581 

0.051198 
0.0000 

Akaike’s Information Criterion (AIC)= 16.20645 

;�. = �5500.129 + 1.306792;.�� − 0.299854;.�0 + 4.B. = 1165.6161 + 1.306792;.�� − 0.299854;.�0 + 4.B. = 2  (32) 

From the estimated Markov switching model with two 

lagged values above, it is evident that all the model 

parameters are significant at the 5% level since their P-value 

(0.0000) < 0.05 except the mean at the second regime with a 

P-value greater than 0.05. 

At the first regime, the estimated mean of the model is 

5500.129 with a sigma of 21.0079 which are both significant 

with P-value of (0.0000) each, while at the second regime, 

the estimated mean of the model switched to an insignificant 

mean of 165.6161 with a sigma of 14.9457 which is 

significant at the 5% level of significance. 

In common is the Autoregressive AR (1) and AR (2) 

parameter, 2o� =  1.306792, and 2o0 =  -0.299854 for both 

regime 1 and regime 2 respectively with p-value (0.000) 

each, and this implies they are both significant at the 5% 

level of significance. 

Table 4. Parameter Estimates of MS-AR Models and Models selection. 

Model [MS-

AR] 

Parameter 

Estimate 
P-value S. E 

Log 

Likelihood 
AIC 

MS (2)-AR 

(1) 
2o� = 0.988384 0.0000 0.001973 -2987.548 16.09972 

MS (2)-AR 

(2) 

2o� = 1.306792 0.0000 0.050581 
-3006.399 16.20645 2o0 = -0.299854 0.0000 0.051198 

Table 4 contained the summary results and the parameters 

estimate of the possible two state Markov switching 

Autoregressive models. Comparing the Akaike Information 

Criteria (AIC) of the models, clearly we prefer the MS (2)-

AR (1) model as the best since it has the smallest AIC 

(16.09972) and the largest log likelihood (-2987.548). 

4.3. Inferences on the selected Markov Regime Switching 

Model 

MS (2)-AR (1) 

;. = �<:A + 2�;.�� + 4.B. = 1<:A + 2�;.�� + 4.B. = 2                (33) 

Where B. denotes the regime/state 

Table 5. Parameter Estimates For the Selected MS (2)-AR (1) Model. 

Regime 1 

Variable Coefficient Std. Error P-value 

C 2594.267 490.0558 0.0000 

LOG (SIGMA) 7.651628 0.046812 0.0000 

AR (1) 0.988384 0.001973 0.0000 

Regime 2 

Variable Coefficient Std. Error P-value 

C 2734.858 477.1843 0.0000 

LOG (SIGMA) 3.980784 0.094791 0.0000 

AR (1) 0.988384 0.001973 0.0000 

Akaike’s Information Criterion (AIC)= 16.09972 

Regime 1 (bull market): ;�. = 2594.267 + 0.988384;.�� + 4.         (34) 

Regime 2 (bear market): ;�. = 2734.858 + 0.988384;.�� + 4.     (35) 

From the estimated Markov switching model above, it is 

evident that all the model’s parameters are significant at the 

5% level since their P-value (0.0000) < (0.05). 

Table 6 below contains the forecasts obtained for (January-

December, 2018) using the MS (2)-AR (1) model in order to 

examine the forecasting performance of the model. 

Table 6. Forecasting Results for MS (2)-AR (1) of All Share Index Data. 

Month Forecast Actual 

January 2018 37,903.41 44,343.65 

February 2018 43,944.99 43,330.54 

March 2018 42,941.66 41,504.51 

April 2018 41,133.26 41,268.01 

May 2018 40,899.05 38,104.54 

June 2018 37,766.09 38,278.55 

July 2018 37,938.43 37,017.78 

August 2018 36,689.82 34,848.45 

September 2018 34,541.43 32,766.37 

October 2018 32,479.44 32,466.27 

November 2018 32,182.87 30,874.17 

December 2018 30,605.49 31,430.50 
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Figure 3. Residual – Actual – Fitted Plot for MS (2)-AR (1) Model: 1988 to 

2018. 

 

Figure 4. Forecasts Plot for MS (2)-AR (1) Model: 1988 to 2020. 

4.4. Transition Probabilities and Expected Durations 

Table 7. Estimates of Transition Probabilities and Expected Durations. 

Constant transition probabilities: 

P (i, k) = P (s (t) = k | s (t-1) = i) 

(row = i / column = j)  

  1 2 

 1 0.933390 0.066610 

 2 0.029268 0.970732 

Constant expected durations:  

  1 2 

  15.01287 34.16748 

The probability transition matrix which is a tool for 

describing the behavior of Markov chains represents the 

probability of moving from state i to state j in a Markov 

process and is denoted as G�H . 

From the matrix above, given that we are in regime/state 1 

(bull market), G�� = 0.93 represents the probability similar 

to a 93% chance of remaining in state/regime 1 and G�0 �0.07  represents the probability similar to a 7% chance of 

switching to regime/state 2. Also, given that we are in 

regime/state 2 (bear market) G00 �  0.97 represents the 

probability similar to a 97% chance of remaining in 

state/regime 2 (bear market) and G0� � 0.03 represents the 

probability similar to a 3% chance of switching to 

regime/state 1. 

Furthermore, the estimated transition probabilities 

indicated that none of the regime is permanent since all the 

estimated transition probabilities are less than one. 

We can also determine the duration of each regime by 

using the diagonal elements of the probability transition 

matrix as described in equation (25). 

From the table of constant expected duration above, the 

expected duration of being in regime 1 (bull market) in the 

stock market is approximately 15 months, while the expected 

duration of being in regime 2 (bear market) is approximately 

34 months. This is because we are dealing with monthly All 

Share Index data from the Nigeria Stock Exchange. 

4.5. Filtered and Smoothed Probabilities 

 

Figure 5. Filtered Regime Probabilities for All Share Index (ASI) Monthly 

Data. 

 

Figure 6. Smoothed Regime Probabilities for All Share Index (ASI) Monthly 

Data: 1988 to 2018. 
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The filtered and smoothed probabilities respectively, 

shows that the model accurately captures the two different 

regimes, because the probability of regime/state 1 is high 

when B. = 1, and low when B. � 2. 

 

Figure 7. Residuals plot for MS (2)-AR (2) Model: 1988 to 2018. 

 

Figure 8. Histogram and Descriptive Statistics for Model Residuals: 1988 to 

2018. 

4.6. Diagnostic Tests for MS (2)-AR (1) Model 

Heteroskedasticity Test 

Table 8. Heteroskedasticity Test: ARCH. 

Heteroskedasticity Test: ARCH   

F-statistic 0.097823 Prob. F (1,369) 0.7546 

Obs*R-squared 0.098328 Prob. Chi-Square (1) 0.7538 

H0: There is no ARCH effect in the Residuals. 

H1: There is ARCH effect in the Residuals. 

From the heteroskedasticity test carried out on the 

residuals of the estimated MS-AR model, we accept the null 

hypothesis at the 5% level of significance and conclude that 

the ARCH test reported homogeneity of variance across error 

term series. 

Table 9. Correlogram of Residuals Q-Statistics. 

Autocorrelation 
Partial 

Correlation 
 AC PAC Q-Stat Prob 

.|*| .|*| 1 0.084 0.084 2.6766 0.102 

.|.| .|.| 2 0.072 0.065 4.6176 0.099 

.|*| .|*| 3 0.109 0.099 9.1207 0.053 

.|.| .|.| 4 -0.031 -0.052 9.4785 0.058 

.|.| .|.| 5 -0.017 -0.025 9.5847 0.088 

.|.| .|.| 6 -0.027 -0.030 9.8605 0.131 

.|.| .|.| 7 0.049 0.066 10.764 0.149 

.|.| .|.| 8 0.044 0.043 11.498 0.175 

Autocorrelation 
Partial 

Correlation 
 AC PAC Q-Stat Prob 

.|.| .|.| 9 0.066 0.058 13.143 0.156 

.|.| .|.| 10 -0.013 -0.044 13.203 0.213 

.|.| *|.| 11 -0.056 -0.069 14.396 0.212 

.|.| .|.| 12 0.033 0.038 14.807 0.252 

H0: The error terms (Residuals) are independent. 

H1: The error terms (Residuals) are not independent. 

From the Q-Statistics tests above, it can be concluded that 

the error terms are not serially correlated since the P-values 

across the 12 lags are greater than 0.05, we therefore accept 

the null hypothesis and conclude that the residuals of the MS-

AR models are independent. Therefore, the residuals of the 

MS (2)-AR (1) model has been diagnosed and examined to 

be white noise since they are not serially correlated, and have 

a constant variance. 

5. Conclusion 

This study examined the volatility on the Nigeria stock 

market by comparing two Markov regime switching 

Autoregressive (MS-AR) Models estimated at different lagged 

values using the Nigeria stock exchange monthly All Share 

Index data from 1988 to 2018. The preliminary analysis of the 

data obtained shows the presence of volatility in the stock 

market. The parameters of the MS-AR Models were estimated 

with most of the parameters significant at 5% level of 

significance. AIC and log-likelihood was used to select the 

best model that was used. From the AIC and log-likelihood, 

MS (2)-AR (1) was selected to be the best model since it has 

the smallest AIC and largest log-likelihood. The nonlinear time 

series model known as the Markov Regime Switching 

Autoregressive (MS-AR) model was then used to generate 

post sample forecasts for 2019 and 2020. The forecasts value 

indicates clearly that All Share Index prices will have a steady 

growth between 2019- 2020. From the trend analysis of the 

Nigerian All Share Index, the result shows that there is an 

unstable trend which indicates that Nigeria stock market is 

experiencing fluctuations in the price indices which shows that 

over the years, investors have been exposed to some certain 

risks in the stock market in the time past. 
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