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Abstract: Recently, Nigeria focused on Agriculture as a way to diversify her economy. Crop production, which is a proxy to 

measure agricultural output is considered very important. So, controlling crop production (output) among states in Nigeria is 

very key. In this study, the generalized regression control chart was used rather than the conventional control chart. The 

conventional control chart does not put into consideration factor(s) that affect crop production. The generalized regression 

control chart considers the factor (independent variable) that affect crop production (dependent variable). The normal 

distribution is a special case of the generalized regression control chart. The possibility of using Weibull regression and other 

non-normal models were considered. In this research, Gaussian distribution was used as the underlying distribution because it 

fitted the crop production data. The cost of seed/seedling was selected from a set of independent variables, because it is most 

significant among other independent variables. The data were collected from secondary sources, precisely National Bureau of 

Statistics (NBS). All the 36 states in Nigeria, including the Federal Capital Territory (FCT) were involved in the study. The 

result of the generalized regression control chart showed that crop production is not in control in Nigeria, which was traced to 

assignable cause of variation in FCT, Abuja. This implied that FCT, Abuja produced below the lower control limit of crop 

production, despite the relative cost of seed/seedlings. 

Keywords: Conventional Control Chart, Crop Production, Exponential Family, Gaussian Regression Model,  

Generalized Regression Control Chart 

 

1. Introduction 

In industry, the quality of the expected product and the 

actual goods manufactured should be the same, but 

sometimes some variations are found, thus producing 

deviations that are random or assignable. Statistical quality 

control and Six Sigma are ways of controlling the quality of 

products by reducing such deviations from standard. 

Shewhart [1] was the first author to propose control charts 

and since then a lot of charts have been established in 

monitoring and controlling different production processes. A 

conventional Shewhart control chart is plotted with the mean 

of process observations at different points with a pair of 

control limits. In developing a Shewhart control chart, one of 

the important assumptions is that the distribution function of 

the underlying process data is normal and the other 

assumption is that process data are independently distributed. 

Statistical quality control (SQC) was defined by 

Montgomery [2] as a technique of analysing the process, 

setting standards, comparing performance, verify and study 

deviations, to seek and implement solutions, analyse the 

process again after the changes, seeking the best 

performance of machinery and or persons. In statistics, 

control charts are statistical process control tools used to 

monitor and control a process. The process is said to be in 

control if all the points plotted fall within the upper and 

lower control limits. 

Alwan and Roberts [3] showed that about 85% of a sample 

of 235 control charts displayed incorrect control limits, and 

Karaoglan and Bayhan [4] mentioned that more than half of 

these displacements were due to violation of the 

independence assumption, this implies that the remaining 

half of these displacements could be due to violation of 

normality assumption. So, for a conventional control chart to 
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display a correct control limits, the process data must be 

normally distributed. The conventional control chart does not 

put into consideration factors that may affect variable to be 

controlled. The generalized regression control chart considers 

the factor that can affect the variable of interest. This is 

enough reason why the conventional control chart will not be 

appropriate for modelling such variable as crop production, 

which is not just dependent on time but also on other factors. 

It might even increase or decrease with time, with varying 

mean and variance. So, the need for a generalized regression 

control chart for such data is necessary. Regression will take 

care of the factor that affects the response variable. So, 

combining regression model and the conventional control 

chart will give a regression control chart. 

The regression control chart was first published in 1955, in 

a book titled “Statistics: a new approach” by Wallis. and 

Roberts [5]. Mandel [6] popularised it and in 1969 applied it 

to monitor and control man hours spent in dispatching of 

mails in post office, regressed on the pieces of mail handled 

[7]. Mandel [7] mentioned that the regression control chart 

has proved useful for a variety of postal management 

problems and offers possibilities for more widespread 

applications in government, business, industry and 

agriculture. 

Statistical model is a description of the probability 

distribution of random variables which can be assumed to 

represent a real world phenomenon [8]. A linear regression 

model describes the relationship of covariate x and a 

continuous response variable Y [8]. One important 

assumption of linear regression model is that the distribution 

of the response variable (y) and the error term are normal. 

Some examples of the application of regression control 

chart to autocorrelated processes were given by Karaoglan 

[4]. The regression control chart considers the factor that can 

affect the dependent variable but assumes the normal 

distribution as a default distribution. The generalized 

regression control chart however, assumes any distribution, 

which a Gaussian (normal) distribution is a special case. 

Thus, this paper, however, focused on applying 

generalized regression control chart as a means of setting 

standards in the controlling and monitoring crop production 

among states in Nigeria, to guide against over or under 

production. This combination of the conventional control 

chart and generalized regression model is an improvement to 

the work of Mandel [9] by selecting an independent variable 

that mostly affected the variation in the dependent variable, 

and also opening ground for generalized regression control 

chart (Weibull regression, Gamma regression, Rayleigh 

regression, Exponential regression and so on). 

The remaining part of this paper is organized as follows. 

Section two comprises control charts. In section three, 

generalized control chart was presented as well as parameter 

estimation for the generalized regression control chart, and 

establishing the control chart limits. Section four consist of 

the application of the generalized regression control chart to 

regression of crop production on cost of seed/seedlings. 

Section five contains the concluding remarks. 

2. Control Charts 

2.1. Conventional Control Chart 

The control chart was invented by Walter A. Shewhart, 

while working for Bell Labs in the 1920s. What makes the 

control chart such a useful tool is the fact that the chart can 

reveal the amount of variation by time, thus enabling the user 

to observe patterns for interpretation and the discovery of 

changes in the process. Grant and Leavenworth [10] showed 

an example of the use of Stewarts, use as the tool of the 

analysis on the tolerance of rheostat. In addition, conducting 

a control chart analysis prior to conducting a six sigma 

calculation allows the six sigma calculation to reveal the true 

inherent process capability [11], while Woodall et al. [12] 

stated that statistical quality control is a collection of tools 

that are essential in quality improvement activities. 

An example of the conventional control chart is depicted 

in Figure 1. The average characteristic (�̅) is plotted against 

time. This conventional control chart is useful if a large 

variation is not suspected to be caused by another variable. If 

the characteristic variable is affected by another variable, 

then the conventional control chart will not be appropriate, 

hence, the need for a generalized regression control chart, of 

which Gaussian regression control chart is a special case. 

 

Figure 1. Conventional Control Chart. 

2.2. Regression Control Chart 

The conventional control chart uses a line of average 

performance with control limits parallel this central line. The 

upper control, lower control and central lines all parallel to 

the horizontal axis, implying that a single average is being 

controlled [9]; and Mandel [9] stated that the regression 

control chart has the following elements, which distinguished 

it from the conventional control chart. 

1. It is a model that controls a varying average rather than 

a constant average. The central line is the regression 

line. 

2. The control limits are parallel to the regression line 

rather than to the horizontal axis. The scatter plot is 

very useful here. Three lines are drawn on the scatter 

plot, the central line (line of best fit), upper control limit 

and lower control limit. The three lines are expected to 

slant upward or downward. 

3. The computation for the construction of the regression 
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control chart is time consuming compared to the 

conventional control chart, but with the help of modern 

high speed computers, the problem of computation is 

solved. The standard deviation of the regression control 

chart is the standard error estimate of the regression 

line. It is the standard deviation estimate based on the 

deviation of the observed values about the regression 

line. It is quite different from the standard error of a 

predicted value of the dependent variable. 

4. The regression control chart is appropriate for a number 

of applications, which the conventional control chart 

does not readily applies. It provides the basis of 

measuring the gains or loss in the response variable, for 

predicting and forecasting the response variable and 

scheduling the covariate resources. 

 

Figure 2. Regression Control Chart. 

The schematic representation of the conventional control 

chart and the regression control chart are shown in Figure 1 

and 2 respectively. The two charts look alike but are 

different. The conventional control chart is univariate, while 

the regression control chart is bivariate. The two figures are a 

replica of the one in [9]. 

3. Research Methodology 

3.1. Data Description 

The data collected initially are panel data consisting of 37 

cross-sections (the states in Nigeria including FCT, Abuja) 

and 10 periods (10 years from 2006 60 2015). The average of 

the 10 years was computed for each cross-section, reducing 

the panel data to cross sectional data. The data was collected 

from the administrative records and publications of National 

Bureau of Statistics (NBS), through the two data collection 

infrastructure; National Integrated Survey of Household 

(NISH) and National Integrated Survey of Establishment 

(NISE). NISH Master Sample was constructed from the 

frame of EAs of 2006 Housing and Population Census by 

National Population Commission (NpopC). The household 

listing of the EAs were stratified into farming and non-

farming household and the sample size is taken from the 

farming through randomization. (See [13], [14]). The data 

collected are crop production (Y), total area cultivated (X1), 

fertilizer usage (X2), rural employment in crop production 

(X3) and cost of seed/seedlings (X4). Generalized regression 

line is fitted to this historical data, establishing limits around 

the regression line. 

3.2. Generalized Regression Control Chart 

The generalized regression control chart has all the 

attributes of the regression control chart of Mendel [9]. The 

difference between these two charts is the difference between 

the ordinary regression model and generalized regression 

model. The formal assumes normality of the response 

variable and the error term, while the later assumes any 

distribution other than the normal distribution. So, the 

regression control chart is a special case of the generalized 

regression control chart. In the ordinary regression control 

chart by Mendel [9], it is assumed that the response variable, 

y values are linearly related to the covariate, x values. For 

each specific x value, it is assumed that the y values are 

normally and independently distributed with a mean value 

estimated from the regression line, and with a standard error, 

which is independent of the values of x and it is estimated 

from the deviations of the actual observations, Y from the Ŷ
estimated from the regression line. The generalized 

regression control chart also assumed that the y values are 

independently distributed with a mean value estimated from 

the regression line, but are not necessary normally 

distributed. A good example is the beta regression control 

chart (BRCC) by Bayer et al. [15]. 

3.2.1. Linear Model 

In statistics, a multiple linear regression model describes 

the relationship of a continuous response variable, Y, and a 

covariate, X. This model is defined as 

�� � �� � �	�	� � �
�
� �⋯� ����� � 
�     (1) 

The model in equation (1), if k =1, we have the simple 

linear regression model given by. 

0 1i i i
y x eβ β= + + ,                         (2) 

where 
0

β is the intercept term, 
1

β is the regression coefficient 

for variable X and 
ie is the error term. Assume that the error 

terms are random, independent and normally distributed with 

mean 0 and variance 
2σ , i.e ie ∼ N(0, σ

2
), i = 1, 2,..., n. 

Note that the variance is independent of x. The error term, 

ie , in equation (1) is written explicitly. It is also possible to 

write the model in equation (2) without explicitly specifying 

the error term, ie . 

0 1
( | )

i i i i
E Y x xµ β β= = + .                      (3) 

The model in equation (3) specifies the expected value of 

Y conditional on x. Equation (3) 

does not specify how the values of Y vary around the 

expected value E(Yi |xi). By defining the Var(Yi) = σ
2
, we 

obtain a model equivalent to model specified in equation (3). 
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If Yi is normal, then Yi ∼ N(
0 1 ixβ β+ , σ

2
). 

The linear model in (3) is transformed to a generalized 

linear model by letting ( )i igµ µ= , so that equation (3) 

becomes 

0 1
( )

i i i
g xµ β β η= + = ,                          (4) 

where g(.) is the link function, which is a real-valued 

monotonic and differentiable function and the term iη is the 

linear predictor. Canterle and Bayer [16] presented several 

possible choices for link functions such as logit, probit, log-

log, complement log-log, Cauchy, and also parametric links. 

It is obvious that µi is the expected value of y, iη is a linear 

combination of the predictors, and g(.) defines the 

relationship between µi and i
η . Since g(.) is monotonic, then 

the relationship of µi and iη is monotonic as well. Thus, the 

inverse of g(.) is given as 

1( )i igµ η−= ,                                      (5) 

which is an alternative to the linear model. Thus, the linear 

model is a special case of the generalized linear model, if 

g(µi) = µi. If the independent variables are more than one, 

then equation (4) becomes 

1

( )
p

i j ij

j

g xµ β
=

=∑ ,                                (6) 

For equations (4) and (6) to be possible, some assumptions 

must hold for Yi in the model. The distribution of Yi must 

belong to the exponential class of family, they must be 

mutually independent, and have expected value ( )
i i

E Yµ = , 

which depends on a linear predictor 
1

p

i j ij

j

xη β
=

= ∑  through a 

monotonic and differentiable link function g(.) such that
1
( )i igµ η−= . The exponential class of family has a probability 

density function given by 

( )
( ; , ) exp ,

( )

i i i
i i i

i i

y b
f y c y

a a

θ θ φθ φ
φ

  − = +  
   

,                   (7) 

where iθ  and φ  are location and scale parameters 

respectively, and ( )ia φ , ( )ib θ  and ( , )ic y φ are known 

functions. Since the variation in Yi is distribution with 

exponential family of distribution, then it has mean and 

variance given by 

( ) '( )
i i i

E y bµ θ= =                            (8) 

and 

2( ) ''( ) ( )i i i iVar y b aσ θ φ= = ,                  (9) 

where equations (8) and (9) are the mean and variance 

respectively of random variable y. Also, '( )ib θ  and ''( )
i

b θ are 

the first and second derivatives of ( )
i

b θ respectively. With 

( )i

i

a
a

φφ = , the variance in equation (9) becomes (10). 

2( ) ''( )
i i i

i

Var y b
a

φσ θ= = .                      (10) 

As mentioned earlier, the second aspect of the 

generalization is that instead of modeling the mean, as µi, we 

use a one-to-one continuous differentiable transformation 

g(µi) given as 

( )
i i

gη µ= .                                      (11) 

The function g(µi) is called the link function. It is further 

assumed that the transformed mean follows a linear model, 

so that equations (4) and (6), which is equated to (11) is 

written in matrix form as 

'

i iXη β= .                                   (12) 

Since the link function is one-to-one, we can invert 

equation (12) to obtain equation (5), making 
i

µ the subject of 

the formula. It should be noted that the response variable Yi 

was not transformed but rather its expected value µi. 

3.2.2. Gaussian Regression Model 

Recall from equation (1), if Y follows a normal distribution 

with mean, µ and variance,  σ2
. then its pdf is given by 

���� = 	
�
��� exp �− 	


 ����
� �
 , −∞ ≤ � ≤ ∞      (13) 

The same procedure used here for Gaussian (normal), can 

be used to achieve everything other distribution belonging to 

the class of exponential family. 

Equation (13) can be rewritten as 

���� = 	
√
� exp �−%&' − ��


�� + ��
�� − ��


���,             (14) 

Take the log of (14) to have 

%&���� = %& � 	
√
�� − %&' − ��


�� + ��
�� − ��


��,            (15) 

Take back the exponential of (15) to have the desired 

exponential class of distribution, given by 

���, (, '� = 
�) *%& + 1
√2./ − �


2'
 + (�
'
 − (


2'
 − %&'0 

���, (, '� = 
�) *%& � 	
√
�� + ���1

�����1���2��34��
�� 0 (16) 

By comparing equation (16) to (7), we have that 

5�6�� = 1
2 (
 + '
%&' 

6� = ( 

7��8� = '
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Mean and Variance of Y 

Recall from equation (8), we have 5�6�� � 	

 (
 � '
%&', 

so that 5�6�� � 	

 �6��
 � '
%&' 

So, 

59�6�� � 6� 
Since, (� � 6� 

:��� � 59�6�� � (�                          (17) 

Also, recall from equation (8) that ;7<���� �599�6��7��8�. 
But 7��8� � '
 and 599�6�� � 1. So that 

;7<��� � '
                            (18) 

Thus, equations (17) and (18) are the mean and variance of 

Y respectively, where Y is normally distributed. 

The link function of Normal distribution is given by 

equation (19) 

=�(�� � (�                              (19) 

where ( )ig µ  is the link function, and iµ  is the mean. 

The generalized linear model of Normal distribution is 

given by equation (20) 

=�(�� � (� � �� � �	�� � >�           (20) 

Maximum Likelihood Estimation for Normal Regression 

Parameters 

From the pdf in equation (16), the log-likelihood is given as 

% � %&?��, (, '� �@ *%& � 	
√
�� � ���1�����1���2��34���� 0

4

�A	
 (21) 

Re-write equation (21) in terms of β to have 

% � %&?��� , 6� , '� �
@ *%& � 	

√
�� � BC�D2B1ED�D�1��D��1��BC2B1ED�����34��� 0
4

�A	
 (22) 

Differentiate equation (22) partially with respect to β0 and 

β1 to have equations (23) and (24) respectively. 

F3
FBC � 	

��∑ ��4�A	 − 4BC�� − B1��∑ ��4�A	                (23) 

F3
FB1 � 	

��∑ ����4�A	 − BC��∑ ��4�A	 − B1��H �	
4
�A	        (24) 

Equate (23) to zero and solve to have 

�I� � 	
4 �∑ ��4�A	 − �	 ∑ ��4�A	 �                    (25) 

Also, equate (24) to zero and solve to have 

�I	J�	

4

�A	
�J����

4

�A	
− �I�J��

4

�A	
 

�I	 � 4H ED�DKDL1 �H EDKDL1 H �DKDL1
4H E1�KDL1 2�H EDKDL1 ��                 (26) 

Thus, equations (25) and (26) are the unbiased estimates of 

β0 and β1 respectively. 

This process can be used to derive the parameter estimates 

of other member of exponential family. However, in a situation 

where the differentiation looks difficult or not in close form, 

we can use the equation defined by [8] to obtained the first 

derivative of the log-likelihood function of the exponential 

family defined in equation (6) in terms of β as 

1

n
i i i

ij i i i j

l l θ µ η
β θ µ η β=

∂ ∂ ∂∂ ∂=
∂ ∂ ∂ ∂ ∂∑ .                  (27) 

The regression parameters of other distributions that are 

member of the exponential family can also be derived using 

(27). This will set the pace for generalized regression control 

chart. Other examples could be Gamma regression control 

chart, Weibull regression control chart, Rayleigh regression 

control chart, Exponential regression control charts. 

3.3. Establishing the Regression Control Chart 

Using the generalized regression line derived using 

maximum likelihood method, and twice the standard error of 

estimate (i.e, 2Se), the control chart, with control limits set at 

2 standard deviations above and below the generalized 

regression line are given by 

The Upper Control Limit (UCL) = MN � 2'         (28) 

The Lower Control Limit (LCL) = MN − 2'         (29) 

The value of σ is unknown but is estimated with Se. The 

use of 2σ or 3σ in equations (28) and (29) is a management 

decision on the level of quality desired. To construct the 

generalized regression control chart used in this research, we 

estimated for the following. 

N = number of pairs of values ( i ix y ) (i = 1 to 37) 

Se = standard error of estimate of the regression based on 

history-period data 

r = Correlation coefficient between x and y. 

r
2
 = Coefficient of determination (explained variation) 

y  = Average response from observed values 

yS  = Standard deviation of response variable 

x  = Average independent variable from observed values 

xS  = Standard deviation of the independent variable 

eS

y
 = Percentage coefficient of variation of the observed 

data 

0
β  = Intercept on y axis 

1
β  = Slope of the regression line 

The generalized regression control chart is then set as 

follows. 

The central line is E(y) = MN  = �I0 + �I1x1, 
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where the values of �I0 and �I1 are computed from equations 

(25) and (26) respectively. 

The upper control limit (UCL) = MN � 2' 

The Lower Control Limit (LCL) =MN − 2', 

where σ is estimated by equations Se, which is standard error 

derived from the regression line. 

3.4. Measuring Progress 

The difference between expected and actual crop 

production ( ˆ
i iy y− ) can be plotted against time like the 

conventional control chart. Also, the cumulative crop 

production in excess or less at the end of a given period can 

be easily determined and tested for significance. The points 

that are out of control are not used in this calculation, 

because they represented assignable causes. 

Test for Significant Gain or Loss in Crop Production 

Statement of Hypothesis 

O� �JP ˆ
i iy y− Q

R

�A	
� 0 

O	 �JP ˆ
i iy y− Q

R

�A	
≠ 0 

Level of significance, α = 5% = 0.05 

Test Statistic: 

U � VWXW%7UYZ
	V<\)	)<\]WVUY\&	Y&V<
7^
	�\<	]
V<
^
�	U\	]7U
^U7&]7<]	
<<\<	\�	VWXW%7UYZ
	V<\)	)<\]WVUY\&	Y&V<
7^
	�\<	]
V<
^
� 
( )

( )

( )

' '

1

2

'

2
1

2

1

ˆ
m

i i

i

m

i

i

e n

i

i

y y

t

x x
m

S m
n

x x

=

=

=

−
=

 − 
 + +

−

∑

∑

∑

                   (30) 

where 
'

ix  = explanatory variable observations made after the 

regression control was established 
'

iy  = cash crop production corresponding to the 

explanatory variable ��9 
'ˆ
iy  = predicted cash crop production corresponding to the 

explanatory variable ��9 
x  = explanatory variable used to establish the regression 

control chart 

x  = mean of the �� 
m = number of ��9 values (points within control) 

n = number of pairs of values ( i ix y ) (i = 1 to 37) 

Se = standard error of estimate of the regression based on 

history-period data 

Se is the standard error based on the estimate on the 

deviations of the observed values about the regression line. It 

should not be confused with the standard error of a predicted 

value of the dependent variable. 

It should be noted that when n is large relative to m, then 

equation (30) can approximated by (31). 

( )' '

1

2

ˆ
n

i i

i

e

y y

t
n

S n
N

=

−
≈

+

∑
                           (31) 

Decision Rule: Reject the null hypothesis, H0, if the 

calculated t-value is greater than the critical t-value (tα/2, N-1). 

Note that N-1 is the degrees of freedom. 

4. Result and Discussion 

4.1. Exploratory Data Analysis 

Table 1. Panel Data of Key Variables. 

I State Year Prod Area Fertilizer Employ Cost 

1 Abia 2006 1607.4 225.36 378.61 1685 1504.67 

2 Abia 2007 1529.5 226.84 367.37 1743 1868.96 

3 Abia 2008 1142.8 220.1 356.13 1750 1645.87 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

68 Benue 2013 12368.3 2129.81 3937.44 1573 17229.72 

69 Benue 2014 13023.7 2144.87 4331.18 1730 18952.69 

70 Benue 2015 13688.2 2162.72 4764.3 1903 20847.96 

. . . . . . . . 

. . . . . . . . 

. . . . . . . . 

369 FCT Abuja 2014 231.9 81.63 295.35 366 629.62 

370 FCT Abuja 2015 243.8 82.31 324.88 403 692.58 
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Table 1 is a longitudinal data with 37 cross-sections 

(states) and 10 time periods, spanning 370 data points. The 

yearly average data for each state is used to construct the 

regression control chart. 

 

Figure 3. Heat Map of the Data. 

The heat map displayed in Figure 3 shows that cost has a 

high correlation with production. The green colour indicates 

a very high value, while red indicates a very low value. So 

the variation from green to red shows how the values reduce 

from highest to lowest. If you look at the heat map very well, 

you will discover that the states with green cells for 

production also have green cells for cost, and the ones with 

red cells for production also have red cells for cost as 

compared with other variables. 

Table 2. Summary Data. 

 
Production Area Fertilizer Employment Cost 

Min. 284.00 63.00 13.21 52.19 120.40 

1st 2218.00 366.80 756.89 914.20 304.60 

Median 3887.00 522.10 2097.30 1266.59 1808.90 

Mean 4310.00 641.10 2508.71 1562.32 3947.70 

3rd 5394.00 698.80 3617.58 1800.40 6045.90 

Max. 10331.00 1972.30 7928.01 5849.78 14981.80 

Table 2 shows the summary statistics of the data collected 

for the analysis. One of these independent variables will be 

used to construct the regression control chart. The variable 

that contributes most to the variation in the dependent 

variable is selected. This can be determined from the multiple 

linear regression model. 

4.2. Normality test of the Dependent Variable, Y (Crop 

Production) 

Table 3. Measure of Skewness and Kurtosis. 

Mean Median Std Dev Skewness Kurtosis 

4309.67 3886.6 2636.77 0.466 -0.715 

Table 3 shows that the skewness of the dependent variable 

(crop production) is 0.466 and the kurtosis is -0.715, which 

shows that the variable is non-Gaussian. Also, the histogram, 

QQ plot and boxplot all show that the variable is non-

Gaussian. It is necessary that we subject the data to 

confirmatory test otherwise, the Gaussian regression model 

will not be relied upon, rather, the generalized regression 

model is appropriate. See also Figure 4. 

 

Figure 4. Normality Test using plots. 

Table 4. Gaussian Confirmatory Test for Crop production. 

 

Kolmogorov - 

Smirnov 

Shapiro-

Wilk 

Jarque – 

Bera 

D' 

Agostino 

Statistic 1 0.9595 1.9854 2.1652 

P-value 0 0.1941 0.3706 0.3387 

The result of the confirmatory test in Table 4 shows that 

Gaussian distribution adequately fit the data. This implies 

that the data is normally distributed as against the results 

from the exploratory data analysis, which earlier suggested 

that the data might not follow a Gaussian distribution. If the 

data is not Gaussian, then other non-Gaussian distributions 
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like Gamma, Weibull, Rayleigh, Exponential and so on 

would be used. 

4.3. Linear Regression Analysis 

 

Figure 5. Relationship between Crop Production and the Independent 

Variables. 

Table 5. Parameter Estimate of Multiple Linear Regression. 

 
Estimate Std. Error t-stat P-value 

Intercept 1910.628 317.879 6.011 0.000 

Area 1.216 0.696 1.747 0.090 

Employment 0.027 0.161 0.170 0.866 

Fertilizer -0.135 0.095 -1.421 0.165 

Cost 0.485 0.063 7.651 0.000 

Residual std. error: 980.9 on 32 DF, R2: 0.877, Adjusted R2: 0.862 

F-statistic: 57.04 on 4 and 32 DF, p-value: 0.000 

Table 5 shows the least squares parameter estimates of the 

multiple linear regression model. The multiple linear 

equation model is given by 

1 2 3 4
1910.628 1.216 0.027 0.135 0.485

i i i i i
y x x x x= + + − +⌢

 (32) 

where y is crop production, x1 is area, x2 is employment, x3 is 

fertilizer and x4 is cost. It is very obvious from Table 5 that 

x4, that is, cost of seed/seedling is the most significant 

independent variable. Thus, x4, will be used to control the 

variability in crop production (y). See also the scatter plots in 

Figure 5 for pictorial explanation. 

Table 6. Regression Parameter for Simple Linear Regression. 

 
Estimate Std. Error t-stat P-value 

Intercept 2045 225.7 9.058 0.000 

Cost 0.5737 0.03914 14.657 0.000 

Residual std. error: 1001 on 35 DF, R2: 0.8599, Adjusted R2: 0.8559 

F-statistic: 214.8 on 1 and 35 DF, p-value: 0.000 

Table 6 shows the least square parameter estimates of the 

simple linear regression model. The table shows that both the 

intercept and the slope are significant. From Table 6, the 

simple linear regression model is given by 

42045 0.5737i iy x= +⌢

                             (33) 

where 2045 is the intercept, meaning that the value of crop 

production when cost of seed/seedling is equal to zero is 

2,045 thousand tons; and 0.5737 is the slope of the regression 

model and it implies that for each unit increase in cost of 

seed/seedling, crop production will increase by 0.5737 

thousand tons (573.7 tons). The analysis shows that 85.99% 

of the variation in crop production can be explained by the 

variation in the cost of seed/seedling. Thus, there is a 

significant linear relationship between crop production and 

cost of seed/seedlings. Note that equation (32) cannot be used 

for the regression control chart because, the chart is a 2-

dimensional plot, containing only a dependent variable on the 

vertical axis and an independent variable on the horizontal 

axis. So, equation (33) is appropriate. 

4.4. Conventional Control Chart 

 

Figure 6. Conventional Control Chart of Crop Production. 

It is obvious from Figure 6 that many points fall outside 

the control limits, which implies that inputs are also 

obviously not the same. Most of the states spent different 

amount on cost of seed/seedlings, which is not captured by 

the conventional control chart. Here the CL y= , 

2 yLCL y Se= − , 2
y

CL y Se= + , where Sey is the standard error 

of y. 

4.5. Regression Control Chart 

To establish a regression control chart in this study, data 

from agricultural data collected from [13] through the two 

data collection infrastructure; National Integrated Survey of 

Household (NISH) and National Integrated Survey of 

Establishment (NISE), which was first collected in 2006 

census. The data is displayed in Table 1. Since a 2-

dimensional plot involves only two variables, cost of 

seed/seedlings is selected as an independent variable among 

other independent variable as a result of its contribution and 

relationship with the dependent variable, crop production. 
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Figure 7. Scatter Plot of Crop production on Cost of Seed/Seedlings. 

The first step is to use the data in Table 1 to plot the 

production against cost on a scatter diagram, which is shown 

in Figure 7. This scatter diagram is needed to primarily check 

on the linearity of the relationship and to detect atypical 

points. It should be noted that crop production depends on 

many other factors other than cost of seed/seedling, such as 

area crop cultivated, fertilizer consumption, employment in 

crop farming and so on, some of these factors vary and some 

are stable, but among the ones used in this study, cost of 

seed/seedling has most variability and explains the variation 

in production more than other variables. The points that 

depart from linear pattern are not easily detected. These 

points can be due to assignable causes of variation. 

So, a good way to detect these points is through the 

regression control chart. It should be noted that each point is 

traceable to each state of the federation. A defaulted state can 

easily be detected and controlled. 

The following values were computed using the data in 

Table 1, considering only production and cost. 

N = 37 locations (states) 

r = 0.9273 

r
2
 = 0.8599 

Se = 1001 thousand metric tons 

y  = 4309.7 thousand metric tons 

yS  = 2636.768 thousand metric tons 

x  = 4309.667 million naira 

x
S  = 4261.814 million naira 

100e
S

cvy
y

= ×  = 
1001

100 23.2%
4309.667

cvy = × =  

It is now easy to compute the regression control chart. In 

this case, the centre line (CL) is the regression line in 

equation (33). The lower and upper control limits are CL-2Se 

and CL+2Se respectively. The narrower the limits, the higher 

the risk of false alarms. However, in this study, two-sigma is 

used. 

 

Figure 8. Generalized Regression Control Chart of Crop Production on Cost 

of Seed/Seedlings. 

This control chart depicted in Figure 8 can be used in 

variety of applications. The first use of this regression control 

chart is to maintain control over performance of crop 

production in each state in Nigeria on continuous basis. For 

instance, if the cost of seed/seedling in 9 billion naira, what is 

the justification on the crop production performance for such 

state of the federation. Is there a gain or loss in productivity 

and is this performance acceptable? If the crop produced at 

this cost fall outside the control limits, then the performance 

is not acceptable, it can be counted as assignable causes of 

variation but if the point is within the control limits, then it is 

an acceptable performance and such variation can be 

attributed to chance. When performance is not acceptable, it 

is the duty of the management or people in authority to 

decide whether or not to investigate the cause of the 

variation. 

It should be noted that in this study, points that fall below 

the lower control limit signifies under production, meaning 

that the cost of seed/seedling was not justified. On the other 

hand, if the points fall above the upper control limit, it 

signifies very high performance. This high performance 

should also be investigated due to the following reasons. 

Firstly, Other states can learn from them to see how they can 

have such a high performance, secondly it could be regarded 

as over production, if the demand is lower than the supply or 

if there is no good storage facilities or good market for the 

export of the excess production. The regression control chart 

is shown in Figure 4 for viewing. 

4.6. Measuring Progress 

The difference between the predicted �_ and observed y is a 

way to simplify regression control chart and getting 

additional information from it. These difference can be 

plotted against time just like the convention control chart. In 

this case, runs and trends can easily be observed, overcoming 

analysing results from cluttered scatter diagram. The 
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cumulative production gain or loss can also easily be determined and tested for significance using t-test. 

Table 7. Gain or Loss Table for Points within control Limits. 

 
Observed Production Predicted Production Gain or Loss Cum. Gain or Loss Cum. Deviation 

State �`a9� �b̀a9� �b̀a9 − `a9� J�b̀a − `a9�
c

aAd
 �ef9 − egf� 

Jigawa 483.524 2124.754 1641.230 1641.230 -3808.301 
Kebbi 701.825 2113.811 1411.986 3053.216 -7635.677 

Bayelsa 1003.626 2536.301 1532.675 4585.891 -10726.677 

Sokoto 1233.535 2116.076 882.541 5468.432 -14550.081 
Yobe 1503.943 2127.797 623.854 6092.286 -18353.080 

Gombe 2093.291 2147.913 54.622 6146.908 -22121.016 

Bauchi 2187.851 2202.364 14.514 6161.422 -25794.043 
Lagos 2198.734 2392.033 193.299 6354.720 -29136.478 

Zamfara 2217.938 2202.905 -15.033 6339.687 -32808.563 

Adamawa 2259.972 2193.041 -66.931 6272.756 -36497.839 
Kano 2540.794 2522.616 -18.178 6254.578 -39612.667 

Katsina 2806.883 2173.070 -633.813 5620.765 -43336.755 

Osun 2851.752 2586.452 -265.300 5355.465 -46340.318 
Edo 2962.887 3071.428 108.541 5464.007 -48498.568 

Abia 3581.422 3237.640 -343.782 5120.224 -50367.109 

Kwara 3590.656 3063.131 -527.525 4592.700 -52539.820 
Plateau 3807.244 3082.577 -724.667 3868.033 -54678.638 

Borno 3886.597 2219.527 -1667.070 2200.963 -58321.750 

Ogun 4064.352 2967.553 -1096.799 1104.164 -60661.054 
Ebonyi 4674.469 4122.835 -551.634 552.529 -60986.701 

Akwa-Ibom 4906.204 4375.400 -530.804 21.725 -60872.128 

Rivers 4971.138 5782.630 811.492 833.217 -58304.753 
Anambra 5098.631 4550.876 -547.755 285.462 -57884.325 

Delta 5139.580 6992.090 1852.510 2137.972 -53208.862 

Ekiti 5223.452 4103.157 -1120.295 1017.677 -53568.807 
Nasarawa 5346.320 4381.128 -965.192 52.485 -53444.250 

Imo 5394.490 5513.452 118.962 171.447 -51346.052 

Oyo 6404.884 7144.139 739.255 910.702 -46405.568 
Ondo 6565.337 5512.423 -1052.914 -142.212 -44309.164 

Kogi 7223.913 5466.072 -1757.841 -1900.053 -42293.550 
Cross-River 7433.572 8717.602 1284.030 -616.023 -34610.520 

Niger 7857.299 8461.275 603.977 -12.046 -27374.269 

Enugu 8378.132 6666.066 -1712.066 -1724.112 -23267.066 
Taraba 8974.789 8893.737 -81.052 -1805.164 -15277.034 

Kaduna 9273.836 8729.668 -544.168 -2349.332 -7572.974 

Benue 10330.816 10640.180 309.364 -2039.968 3461.107 

 

Where 
'

iy , 
'ˆ
iy , 

'

4x  and 4x  are the values of the observed 

production for points in control, and their corresponding 

predicted y, cost, and average cost respectively. Table 7 

contains 36 data points because 1 data point is below the 

lower control limit (LCL). This point is FCT-Abuja, and it is 

deleted from the table as the assignable cause of variation. 

The cumulative gain or loss can be used to determine 

whether the regression line and control chart limits need 

revision. 

At the end of a particular period, or within a fiscal year, 

the monitoring team can check the level of performance to 

determine if it has changed significantly. This can be 

determined by a student’s t test given in equation (30). 
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The formula for the t-test above can be approximated to 

the one in equation (31) if m and n are close. The results 

obtained from the two formulas are equal when rounded up 

to 4 decimal places. Thus, the formula below is a good 

approximation for the t-test. 

( )' '

1

2

ˆ
m

i i

i

e

y y

t
m

S m
n

=

−
≈

+

∑
 

2

2039.968
-0.24183

36
1001 36

37

t
−= =

+
 

This calculated value of t can be compared with 2 or to the 

critical value of t checked on the tables at n-2 degrees of 

freedom. Alternative, the p-value can be derived from the R 
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code and it is given by dt(-0.2418, 35) = 0.38438. Since the 

p-value is greater than the level of significance (α = 0.05), 

then we cannot reject the null hypothesis, and conclude that 

the cumulative net gain is not statistically different from zero. 

Note the following recommendations. If the t-test is 

significant, a new control chart would have been drawn based 

on current’s year data, showing new performance level. This 

shows that there is gain but the gain is not significant, it 

could be due to chance. It is a gain because actual 

productivity is greater than the expected productivity. 

5. Concluding Remarks 

The generalized regression control chart is a combination 

of generalized regression model and control charts. The 

regression line is the central line, which is applicable to 

linear and non-linear models as well as generalized 

regression model, depending on the shape of the data under 

consideration. The crop production data used in this work 

appeared to be non-Gaussian from the histogram and 

boxplot, but the confirmatory test shows that it is Gaussian, 

so it will not be necessary to consider other distributions 

since Gaussian shows a good fit. 

Based on the result of the analysis, we conclude that there 

is a significant relationship between crop production and the 

independent variable (cost of seed/seedlings). The result 

shows that among the four independent variables, cost of 

seed/seedling is the most significant. The regression line is 

fitted and the regression control chart fitted using the 

regression line as the central line (CL), and CL±2Se as the 

control limits. 

The regression control chart is out of control as a result of 

a point just a little below the lower control limit. This point is 

FCT, Abuja. This shows that crop production in FCT, Abuja 

does not measure up to the cost incurred in seed/seedlings. To 

make adjustment and use the control chart for monitoring 

crop production subsequently, this point out of control (FCT-

Abuja) was deleted from the table, since it is an assignable 

cause of variation. The cumulative gain or loss table 

developed can be used to determine whether the regression 

line and control chart limits need revision. This model will 

capture the data during production process and gives alarm at 

every deviation (variation) in the production line at the end of 

each year. 

Major stakeholders and policy makers should work with 

the available statistical models to monitor the expected crop 

production in Nigeria by conscious effort. Cost of 

seed/seedling is a very important factor to be considered, 

when measuring crop production level at any point. 
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