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Abstract: Copula model is introduced in modeling the co-dependence structures of anthropometric variables-Body mass 

index (BMI), Abdominal circumference, Adiposity and Percent body fat-because it can capture monotonic dependence. Four 

copula-based Kumaraswamy-epsilon distributions are derived and used to determine the best fit to the anthropometric data, 

these are new. These are the Gaussian, Clayton, Frank and Gumbel copulas. Clayton model provided the best fit in four 

bivariate pairs-BMI and Percent body fat, BMI and Abdominal circumference, Adiposity and Abdominal circumference and 

Abdominal circumference and Percent body fat-while Gaussian is best for BMI and Adiposity pair and Frank is best for 

Adiposity and Percent body fat pair. Copula-based Kendall’s tau and tail dependence are used as estimates for measuring the 

strength of the co-dependence. The results strongly recommend the use of BMI as an anthropometric index for estimating 

human body composition of adiposity. However for individuals with BMI values in the two extreme tails, their adiposity 

should be measured directly. The results do not find any suitable anthropometric indices for estimating percent body fat and 

therefore is recommended that for such epidemiological research, percent body fat should be measured directly. The results 

also clearly show that the Kendall’s tau and the corresponding Pearson correlation coefficient estimates are largely at variance 

whenever the co-dependence structure cannot be described as linear dependence. This can prompt contradictory conclusions. It 

is therefore suggested that for such research, whenever Pearson correlation coefficient method is in use, a coefficient of 

determination of a minimum of 75% should be obtained before any anthropometric index can be recommended for body 

composition substitution. 

Keywords: Anthropometric Index, Body Composition, Correlation Matrix, Inference Function for Margin, Kendall’s Tau, 

Kumaraswamy-epsilon Distribution, Monotonic Dependence 

 

1. Introduction 

In the study of dependence among variables, Pearson’s 

correlation coefficient is the measure of dependence most 

widely used. It is actually a measure of linear dependence 

and not general dependence. The other measures of 

dependence are the Kendall’s tau and Spearman’s rho. These 

are distribution-free methods. When a bivariate distribution 

can assume an elliptical form (examples multivariate normal 

or multivariate Student), then the dependence structure 

among the variables is linear and as such the use of Pearson’s 

correlation coefficient is appropriate. But when the 

distribution is non-elliptical, the use of Pearson’s correlation 

coefficient may lead to misleading conclusions [1]. 

Consequently, there is a need for alternative measures of 

dependence that is appropriate when the bivariate distribution 

is non-elliptical. The copula-based ones are in use. 

Copula provides a link between a bivariate (multivariate) 

distribution and its component marginal distributions. It has 

the advantage that the appropriate marginal distributions can 

be selected freely and be linked through a suitable copula. 

Copula-based measures of dependence measure the degree of 

monotonic dependence between two variables whereas linear 
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correlation measures the degree of monotonic linear 

dependence only. The use of copula-based measures for 

monotonic dependence instead of the linear correlation 

coefficient is suggested [13]. These authors also opined that a 

copula is invariant under increasing and continuous 

transformations of the marginals. Thus, the copula approach 

is recognized as a powerful tool for modeling dependence 

between variables. A diagram distinguishing between 

monotonic dependence and monotonic linear dependence is 

shown in Figure 1 below. 

In most literature, the study of co-dependence between 

anthropometric variables is done based on the assumption of 

a linear correlation. For example, it is found [7] that the 

linear correlation between body mass index (BMI) and some 

anthropometric variables is strong and positive. Other 

examples include [2, 3, 29, 37]. In this study we introduce a 

copula approach. That is, we construct copula-based bivariate 

Kumaraswamy-epsilon distributions and apply the same in 

modeling co-dependence between anthropometric variables. 

This is new. 

 

Figure 1. Monotonic and monotonic linear dependence. 

2. Review of Copulas 

A copula is a multivariate distribution function on a unit 

cube �0,1��  in ��  with uniform marginal distributions. It 

relates an arbitrary distribution function �	 on �� to a copula 
	 through the marginal distribution functions ��, … , ��. The 

name and theory of copula are rooted in Sklar’s theorem [36], 

and the frequency of its appearance in the literature increased 

as from 1999 [15]. An elaborate article [13] motivated the 

application of copulas in the financial sector for assessment 

and management of risk in portfolio investments. Li argued 

“… why a copula function approach should be used to 

specify the joint distribution of survival times after marginal 

distributions of survival times are derived from market 

information, such as risky bond prices or asset swap spreads” 

[25]. Today, studies and applications of copulas have become 

very popular among academicians, engineers, economist, 

actuarial scientist, dynamic system modelers and more [14]. 

Many copula families are in use for constructing 

multivariate distributions; for example, elliptical, 

Archimedean, Archimax, and order statistics copulas. 

Comprehensive and elaborate studies on these families and 

some areas of application can be found in the literature, for 

examples [31, 18, 30]. Members of the elliptical copula 

family, for instance, are the normal and Student’s t copulas, 

and they form a class of implicit copulas. These copulas have 

found application in modeling multivariate relationships in 

the financial sector [40, 25, 27, 23]. 

Archimedean copula family has the Clayton, Frank, 

Gumbel, Ali-Mikhail-Haq copulas as members. These have 

enabled the construction of multivariate non-normal 

distributions that have found applications in finance [17, 38, 

32, 21], hydrology [10, 34], wind speed modeling [8, 43, 42, 

35], health [28, 22], to mention just a few. The Gumbel 

copula also belongs in the family of extreme value copulas. 

3. Univariate Kumaraswamy-epsilon 

Distribution 

The Kumaraswamy-epsilon distribution (henceforth 

denoted K-epsilon distribution) was introduced [16] as a new 

probability distribution with shapes similar to most lifetime 

distributions-for instance, gamma, Weibull and lognormal. It 

is a continuous probability distribution function of the 

Kumaraswamy-G family [9] with base epsilon probability 

distribution [12]. 

A continuous random variable 
 is distributed according 

to the K-epsilon distribution with parameters �, �, � and � if 

its probability density function is given by 

����� � ��� � ��
������ �1 � ��� ���1 � � �!��     (1) 

where � � 1 � ��"������
#��

, 0 $ � $ �  and �, �, �, � % 0 ; � 

and �  control the skewness and tail weight of the 

distribution, respectively. 

Its cumulative distribution and quantile functions are, 

respectively, given by 

����	� � 1 � �1 � � �!                        (2) 
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and 

�& � � '��'"�                                 (3) 

where ( � )1 − *1 − �1 − +�,-.
,/0

� �#1
, 0 < + < 1. 

4. Copula-based Bivariate K-epsilon 

Distributions 

Let 
 = �
�, … , 
��2 denote a random vector, whose joint 

distribution, � , is desired. Let the variables 
�, … , 
�  be 

described by the marginal distribution functions ��, … , �� , 

respectively. Then, a copula 
  relates the marginal 

distributions to � [36] by 


�3�, … , 3�� = � ������3��, … , �����3���     (4) 

where �4 = �4���34�, 5 = 1,… , 6, are the quantile functions 

of the marginals. 

When 
�∙�  and ��∙�  are differentiable, then equation (4) 

satisfies 

8��,,…,�9�8,��,�∙∙∙89��9� = :�3�, … , 3��	                (5) 

where :�3�, … , 3�� = ;9
;<,…,;<9 
�3�, … , 3�� , :�∙�  and 
�∙� 

are the copula density and distribution functions, 

respectively. 

The copula-based bivariate K-epsilon distributions that are 

of interest in this study are based on the normal (Gaussian), 

Clayton, Frank and Gumbel copulas. The copula functions 

are derived from equations (4) and (5) where the marginal 

distribution function 34 = �4��4�, 5 = 1, 2 , is specified by 

equation (2). In addition, the univariate K-epsilon density 

functions, �4 = �4��4�, 5 = 1, 2, in each of the copula-based 

bivariate K-epsilon density function is specified in equation 

(1) above. 

4.1. Gaussian Copula-based Bivariate K-epsilon 

Distribution 

The Gaussian copula is an implicit copula presented in the 

form of the bivariate Gaussian cumulative distribution 

function. It is given by 


>�3�, 3?� = @ @ 1
2AB1 − C?

DE,�<,�

�F

DE,�<��

�F
 

G�+ H− �
?���>�� �I�? + I?? − 2CI�I?�K LI�LI?	     (6) 

where −1 < C < 1  and C  denotes the copula parameter, 

which is copula-type specific. 

The corresponding Gaussian copula density function is 

given by 

:>�3�, 3?� = �
?MB��>� G�+ H− >

?���>�� NCΨ�? + CΨ?? − 2Ψ�Ψ?PK	                                              (7) 

where Ψ4 = Q���34� , 5 = 1, 2 , and Q���∙�  is the inverse 

standard normal distribution function. 

The Gaussian copula-based bivariate K-epsilon probability 

density function is given by 

����, �?� = ���? �
?MB��>� G�+ H− >

?���>�� NCΨ�? + CΨ?? −
2Ψ�Ψ?PK	                                 (8) 

4.2. Clayton Copula-based Bivariate K-epsilon Distribution 

The Clayton copula distribution and density functions are, 

respectively, given by 


>�3�, 3?� = �3��> + 3?�> − 1�,R	             (9) 

and 

:>�3�, 3?� = �">
�<,<��,SR �3��> + 3?�> − 1��?�

,R	    (10) 

where C > 0. Thus, the Clayton copula-based bivariate K-

epsilon probability density is given by 

����, �?� = ���? �">
�<,<��,SR �3��> + 3?�> − 1��?�

,R   (11) 

4.3. Frank Copula-based Bivariate K-epsilon Distribution 

The Frank copula distribution and density functions are, 

respectively, given by 


>�3�, 3?� = − �
> log W1 + �XERY,����XERY����

�XER��� Z     (12) 

and 

:>�3�, 3?� = >XER�Y,SY�����XER�
����XER�����XERY,����XERY����       (13) 

where C ≥ −1\	]0^. Consequently, the Frank copula-based 

bivariate K-epsilon probability density function is, therefore, 

given by 

����, �?� = ���? >XER�Y,SY�����XER�
����XER�����XERY,����XERY����		     (14) 

4.4. Gumbel Copula-based Bivariate K-epsilon Distribution 

The Gumbel copula is both an Archimedean as well as an 

extreme-value copula. Its distribution and density functions 

are given, respectively, by 


>�3�, 3?� = _�+ `−��− log 3��> + �− log 3?�>�,Ra (15) 
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and 

:>�3�, 3?� = 
>�3�, 3?�3�3?
��− log 3���− log 3?��>��

��− log 3��> + �− log 3?�>�?��>
 

`��− log 3��> + �− log 3?�>�,R + C − 1a	     (16) 

where C ≥ 1. The Gumbel copula-based bivariate K-epsilon 

probability density function is, therefore, given by 

����, �?� = ���? 
>�3�, 3?�3�3?
��− log 3���− log 3?��>��

��− log 3��> + �− log 3?�>�?��>
 

`��− log 3��> + �− log 3?�>�,R + C − 1a	      (17) 

5. Copula Measures of Dependence 

A copula-based measure of dependence measures the degree 

of monotonic dependence between two variables, whereas 

Pearson’s correlation coefficient measures the degree of 

monotonic linear dependence only. Copula-based measures 

of dependence for the Kendall’s tau and tail dependence can 

be derived from relations obtainable from the literature, see 

for example [1]. The expressions for these derived measures 

are presented in Table 1 below. 

Table 1. Some copula-based dependence measures. 

Copula 
Copula-based 

Kendall’s b 
Copula-based Tail Dependence 

Normal 
?
M sin���C�  fg = f< = 2 lim�→�FQ *� B��>B�">. = 0  

Clayton 
>
>"?  fg = 2�,R  

Frank 1 − j
> �k��C� − 1�  NA 

Gumbel 1 − �
>  f< = 2 − 2,R  

C	 is the copula parameter and k���� = �
�9 l m9

Xn��
�
o LI, 6 = 1, 2  is the 6mp 

order Debye equation 

6. Review of the Anthropometric 

Variables and Impact on Human 

Health 

Anthropometry is the scientific study of the measurements 

and proportions of the human body. They are applied in the 

textile industries for design purposes. For instance, there are 

41 predefined feature lengths on the body most commonly 

used by the fashion industry [24] for footwear and clothing 

design, and they are also used by both working and 

household environments, to achieve the best match between 

products and their users [41]. However, the focus of this 

study is not for such but rather for their use in determining 

human health indices. 

Certain anthropometric measures are used as indicators, or 

identifiers, of chronic human health risks. For instance, 

abdominal (waist) circumference is a relative determinant of 

adiposity, also known as obesity; and obese persons have 

high risk of cardiovascular diseases and diabetes mellitus [5]. 

Abdominal circumference is also used as a complimentary 

measure to provide information on percent body fat [4]. 

Percent body fat is also an indicator of human health risks 

and its assessment is used commonly for categorization in 

health and sports performance-men and women with more 

than 25 and 30 percent body fat, respectively are considered 

obese [39] and stand the risks of hypertension, dyslipidemia 

and hyperglycemia [44]. Body mass index (BMI) is also a 

common measure of obesity and studies have shown that it 

correlates with percent body fat. It is found [29] that the 

range of correlation between BMI and percent body fat is 

from 0.61 to 0.85 within location and sex groups in Nigerian, 

Jamaican and African American populations. Many other 

references on the interdependence of anthropometric 

variables and their impact on human health can be found in 

the literature, see for examples [3, 6, 2, 26, 37]. 

Body composition (adiposity and percent body fat) can be 

measured directly. For example, percent body fat can be 

measured [2] using bioelectrical impedance analysis (BIA), but 

this is very expensive. Consequently, for health research, it is 

important to find a reliable easy-to-use method of determining 

body composition. Research so far has concentrated on 

exploring the correlation between anthropometric variables 

and body composition measures by the use of Pearson 

correlation coefficient. This informed the reasoning behind 

substituting, for example, BMI for body composition 

assessment. Here, we introduce copula model alternatives 

because they have the advantage of capturing general 

dependence as opposed to the case of Pearson correlation 

coefficient which assumes only linear dependence. 

7. The Model 

In most studies on anthropometric variables, Pearson 

moment correlation coefficient is employed as a measure of 

dependence. The Pearson’s correlation coefficient is a 

measure of linear dependence and not general dependence as 

explained earlier. For example, it was found [29] that the 

functional relationship between percent body fat and BMI 

were quadratic in all location and sex groups in African 

American and Jamaican populations. This implies that the 

use of Pearson moment correlation coefficient to depict 

dependencies in this, and many other similar scenarios may 

lead to misleading conclusions. This creates the need for 

alternative methods for capturing co-dependence such as 

copula-based measures. A copula-based measure of 

dependence measures the degree of monotonic dependence 

between two variables, whereas Pearson’s correlation 

coefficient measures the degree of monotonic linear 

dependence only. 

Consequently, we introduce the copula approach to 

measure co-dependence among anthropometric variables. 

What it entails is as follows: 

1. We model the co-dependence of variables in 

anthropometry using copula-based bivariate K-epsilon 
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distributions derived in equations (8, 11, 14) and (17). 

2. We then estimate the copula-based Kendall’s tau and 

tail dependence measures from the estimated copula 

parameter of the models. 

Four copula models are used in this study. This is done in 

order to provide a greater depth in the search for appropriate 

models that can best describe the co-dependence structure 

between pairs of anthropometric variables examined. 

8. Application 

8.1. The Data 

The data used for application are anthropometric 

measurements on four variables; namely, BMI, percent body 

fat, adiposity and abdominal circumference. The data were 

collected for 250 men between the ages 22 years and 81 

years (average age is 44.88 years) and obtained from a 

sample data placed on Dr. John Ralph’s statistics website: 

https://www2.statson.edu/jrasp/data.htm/body fat. The data 

were originally on 252 men but two were removed as a 

measure of data cleaning. Weight and height were initially in 

pounds (lb) and inches (inch), respectively, and were 

converted to kilograms (kg) and metres (m) upon multiplying 

with respective factors 0.453592 and 0.0254. BMI was 

computed as weight divided by the square of height. 

8.2. Correlation Matrix Plots 

Four anthropometric variables were chosen based on their 

relevance in determining possible human health risks [33, 44, 

5]. Preliminary correlation plots to show the trend in the 

scatter plots of variables in the study are presented in Figure 

1 below. This serves as an essential prelude to any statistical 

analysis. 

The scatter plots present varied pictures, suggestive of 

the possible copula model that can capture their co-

dependence. 

 

Figure 2. Plots of correlation and linear dependencies among anthropometric variables. 

8.3. Fitting the Univariate Distributions 

Since interest here is to fit the copula-based bivariate K-

epsilon distributions in equations (8, 11, 14) and (17), we 

need to first find the appropriate marginal distributions. This 

is determined by fitting the univariate K-epsilon and normal 

distributions to the datasets using fitdistrplus package in R. 

The results are presented in Tables 2 and 3, respectively. 

Table 2. Estimates of parameters from univariate K-epsilon distribution fit to anthropometric data. 

Variable 
Parameter estimate (std error) CvM 

(p-value) 
AIC Remark qr	�s_�  tu	�s_�  vw	�s_�  xu	�s_�  

BMI 48.166 (10.038) 3.815 (0.885) 0.122 (0.011) 57.793 (3.936) 0.3359 (> 0.1) 1349.47 Good fit 
Adiposity 43.518 (9.380) 6.183 (1.860) 0.115 (0.011) 82.841 (20.484) 0.2845 (> 0.1) 1343.93 Good fit 

Percent body fat 2.801 (0.224) 50.940 (9.609) 0.013 (0.004) 63.604 (17.688) 0.1919 (> 0.2) 1726.25 Good fit 

Abd. circum. 154.995 (53.900) 3.933 (1.543) 0.046 (0.005) 234.888 (80.320) 0.0569 (> 0.8) 1887.69 Good fit 

CvM denotes Cramer von Mises statistic value, AIC denotes Akaike Information Criterion, Abd. circum. denotes Abdominal circumference 

Table 3. Estimates of parameters from univariate normal distribution fit to anthropometric data. 

Variable 
Parameter estimate (std error) CvM (p-value) AIC Remark yr	�s_�  zr	�s_�     

BMI 25.415 (0.229) 3.628 (0.162) 0.3941 (> 0.07) 1357.82 Good fit 

Adiposity 25.448 (0.229) 3.615 (0.162) 0.4278 (> 0.06) 1355.99 Good fit 
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Variable 
Parameter estimate (std error) CvM (p-value) AIC Remark yr	�s_�  zr	�s_�     

Percent body fat 18.963 (0.483) 7.631 (0.341) 0.0629 (> 0.7) 1729.57 Good fit 

Abd. circum. 92.602 (0.675) 10.679 (0.478) 0.1821 (> 0.3) 1897.61 Good fit 

CvM denotes Cramer von Mises statistic value, AIC denotes Akaike Information Criterion, Abd. circum. denotes Abdominal circumference 

Both distributions fit the data. However, the values of the 

Akaike information criterion (AIC) suggest that the K-

epsilon distribution performed better. Hence the choice of the 

K-epsilon distribution as marginals for determining the best 

copula model(s) is appropriate. 

8.4. Fitting the Copula-based Bivariate K-epsilon 

Distributions 

As derived above, we are using copula-based bivariate K-

epsilon distributions as models for studying the co-dependence 

structure of the anthropometric variables in the study. In order to 

further understand the nature of these dependences we are fitting 

four types of copula-based bivariate K-epsilon density functions, 

namely, Gaussian, Clayton, Frank and Gumbel copula-based 

density functions. These are given in equations (8, 11, 14) and 

(17), respectively. The general log-likelihood function of the 

model is given by 

{�|�, |?, C|��, �?� = ∑ log :> ���N��� , |�P, �?N�?� , |?P����� +∑ log ��N��� , |�P���� + ∑ log �?N�?� , |?P����           (18) 

where |4 = ��4 , �4 , �4 , �4 	�2  and �4 , 5 = 1, 2  is a vector of 

sample values �4� . 
Three methods can be applied for estimating the 

parameters of the log-likelihood function in equation (18). 

These are exact maximum likelihood (EML), inference 

function for margins (IFM) and canonical maximum 

likelihood (CML). The CML is a semi-parametric method 

that involves the use of the univariate empirical cumulative 

distribution function for the margins and plug into equation 

(19) below to estimate the copula parameter. This is not of 

interest in this study. The EML method involves estimating 

all the 9 parameters in equation (18) simultaneously. It 

produces inconsistent parameter estimates when the number 

of parameters is large and sample size small [20]. The IFM 

method is a sequential procedure that involves estimating the 

parameters of the marginal distributions first. That is, we 

evaluate |w� = arg��� ∑ log ��N��� , |�P����  and |w? =arg��� ∑ log �?N�?� , |?P���� , and then estimate the copula 

parameter using 

C� = arg��� ∑ log :> ���N��� , |w�P, �?N�?� , |w?P����� 	  (19) 

The IFM gives parameter estimates that are consistent and 

asymptotically normal [20]. It produces efficient parameter 

estimates [19]. Also, in an unpublished paper, Xu suggest 

“that the IFM method is highly efficient compared with the 

(exact) MLE method” [18]. Its other advantage is that it turns 

out to be the best method when the number of parameters in 

the margins is large. With nine parameters in the bivariate K-

epsilon distribution, we considered the IFM method an 

appropriate choice. Equation (19) was used to estimate the 

copula parameter by using the estimated parameters values 

for the margins from Table 2. The estimation was done using 

optim package in R. The results of various copula parameter 

estimates for dependence among anthropometric variables of 

BMI, percent body fat, adiposity and abdominal 

circumference are presented in Table 4 below. 

Table 4. Copula parameter estimates for dependence among anthropometric variables. 

Variables Copula �r	�s_� CvM (p-value) ��� Remark 

BMI & Adiposity 

Clayton 39.470 (3.752) 0.0144 (< 0.0005) 1293.2 Good fit 

Frank 106.000 (NA) 0.0039 (> 0.06) 1328.4 Not fit 

Gaussian 0.996 (0.081) 0.0210 (< 0.0005) 1199.4 Good fit 

Gumbel 52.606 (NA) 0.0027 (> 0.9) 1375.6 Not fit 

BMI & Percent body fat 

Clayton 1.421 (0.097) 0.2526 (< 0.0005) 124.4 Good fit 

Frank 6.158 (0.628) 0.0310 (< 0.05) 171.0 Good fit 

Gaussian 0.725 (4318) 0.0179 (> 0.3) 180.3 Not fit 

Gumbel 1.854 (22483) 0.0233 (> 0.1) 152.8 Not fit 

BMI & Abd. circum. 

Clayton 3.663 (0.277) 0.3356 (< 0.0005) 330.2 Good fit 

Frank 13.090 (1.052) 0.0250 (< 0.04) 400.8 Good fit 

Gaussian 0.919 (1282) 0.0156 (> 0.2) 444.0 Not fit 

Gumbel 3.337 (119470) 0.0129 (> 0.4) 395.0 Not fit 

Adiposity & Percent body 

fat 

Clayton 1.187 (NA) 0.2573 (< 0.0005) 48.3 Good fit 

Frank 6.130 (0.459) 0.0288 (< 0.05) 47.5 Good fit 

Gaussian 0.742 (143.2) 0.0160 (> 0.5) 51.5 Not fit 

Gumbel 1.250 (708.2) 0.0218 (> 0.1) 35.0 Not fit 

Adiposity & Abd. circum. 

Clayton 3.753 (0.277) 0.3293 (< 0.0005) 333.0 Good fit 

Frank 13.420 (1.113) 0.0239 (< 0.05) 411.8 Good fit 

Gaussian 0.923 (80.36) 0.0151 (> 0.2) 457.4 Not fit 

 Gumbel 3.461 (20202) 0.0138 (> 0.3) 415.4 Not fit 

Percent body fat & Abd. Clayton 183.9 (0.142) 0.2503 (< 0.0005) 187.1 Good fit 
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Variables Copula �r	�s_� CvM (p-value) ��� Remark 

circum. Frank 8.014 (0.770) 0.0303 (< 0.04) 253.0 Good fit 

Gaussian 0.811 (4.096) 0.0180 (> 0.2) 269.6 Not fit 

Gumbel 2.252 (43.75) 0.0344 (< 0.02) 240.6 Good fit 

�G denotes standard error, CvM denotes Cramer von Mises statistic value, ��
  denotes Akaike information Criterion, Abd. circum. denotes Abdominal 

circumference, C�  is the copula parameter estimate 

The bolded row in every pair of variables indicates the best 

fitted copula. The relative measure of Kendall’s � and lower 

tail dependence based on the best fitted copula in each paired 

combination are presented in Table 5. The corresponding 

estimates of Pearson’s correlation coefficient and the 

assessment of strength of dependence in each case are also 

indicated in Table 5. 

Table 5. Estimates of Copula-based Kendall’s � and Tail Dependence based on copula and Pearson Correlation Coefficient. 

Variable copula b�� (strength*) �r	(p-value) (strength*) �r�	 
BMI & Adiposity Gaussian 0.943 (v. strong) 0.997 (< 0.0001) (v. strong) 0.000 

BMI & Percent body fat Clayton 0.415 (moderate) 0.720 (< 0.0001) (strong) 0.614 

BMI & Abd. circum. Clayton 0.649 (strong) 0.921 (< 0.0001) (v. strong) 0.828 
Adiposity & Percent body fat Frank 0.589 (moderate) 0.721 (< 0.0001) (strong) NA 

Adiposity & Abd. circum. Clayton 0.652 (strong) 0.922 (< 0.0001) (v. strong) 0.831 

Percent body fat & Abd. circum. Clayton 0.479 (moderate) 0.809 (< 0.0001) (v. strong) 0.686 

�̂� is the Copula-based Kendall’s � estimate, �� is the Pearson correlation coefficient estimates, f̂g is the estimate of lower tail dependence values, * as classified 

in www.statisticshowto.datasciencecentral.com. 

Scatter plots of the observed and simulated data from the 

bivariate K-epsilon distribution based on the best copulas, and 

their respective marginal fit, are presented in Figures 3-5 for the 

dependence relationship between pairs of anthropometric 

variables. 

9. Discussion of Results 

In Table 4, the bolded row in every pair of variables indicates 

the best fitted copula. The results clearly show that Clayton 

copula is the best copula model for measuring the co-

dependence in four out of six combinations of anthropometric 

variables examined. The Gaussian and Frank copulas are best in 

one each. Again from Figure 2, the scatter plots, superimposed 

with the simulated data points from the respective best copula-

based K-epsilon distribution, depict same. 

The Gaussian copula model is compatible with the BMI 

and adiposity bivariate data. The Gaussian copula has an 

elliptical distribution as such the co-dependence between 

BMI and adiposity can be described by a linear dependence. 

Consequently, the Pearson linear correlation coefficient is an 

appropriate measure of this dependence. However, it should 

be noted that for the Gaussian copula there is no tail 

dependence. Indeed the coefficient of lower and upper tail 

dependence are zero. This means that irrespective of any high 

correlation coefficient estimate that may be obtained for BMI 

and adiposity, extreme events appear to occur independently. 

 

Figure 3. Scatter plots, simulated data points from the fitted bivariate K-epsilon distributions of the pairs BMI and Percent body fat and BMI and Abdominal 

circumference and their fitted marginal distributions 
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Figure 4. Scatter plots, simulated data points from the fitted bivariate K-epsilon distributions of the pairs Adiposity and abdominal circumference and Percent 

body fat and abdominal circumference and their fitted marginal distributions. 

 

Figure 5. Scatter plots, simulated data points from the fitted bivariate K-epsilon distributions of the pairs Adiposity and Percent body fat and adiposity and 

BMI and their fitted marginal distributions. 

The Clayton copula models are compatible with the 

bivariate data for the pairs; BMI and percent body fat, BMI 

and abdominal circumference, adiposity and abdominal 

circumference, and percent body fat and abdominal 

circumference. The Frank copula model is compatible with 

only adiposity and percent body fat bivariate data. The two 

types of copula models describe a co-dependence that is 

monotonic but not linear dependence. Copula-based 

measures of Kendall’s tau and tail dependence are better [13] 

measures for this co-dependence than the linear correlation 

coefficient. It should be noted that Clayton copula has lower 

tail dependence. This means that at the lower extremes (not 

the upper), there is dependence between the two variables in 

the model in question. 

The fitting of the various copula models to the bivariate 

data has thrown more insight into the nature of their co-

dependence structure. But the measure of the co-dependence 

derivable from the model has far more practical implications. 

It provides a reliable base for the use of anthropometric 

measures as surrogates for estimating body composition 

(adiposity and percent body fat) in human health assessment. 

The measures of co-dependence used in this study are the 

copula-based Kendall’s tau and tail dependence, the results of 

which are tabulated in Table 5. The estimated values for the 

Kendall’s tau range from 0.41 to 0.94; indicating moderate to 

very strong dependence. The highest value obtained is 0.94 

for the co-dependence between BMI and adiposity. This 

indicates very strong dependence and supports the 
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substitution of BMI for body composition assessment of 

adiposity. As explained earlier for the Gaussian copula model 

there is no tail dependence. Hence, for individuals with 

values of BMI at the two extreme tails it is better to measure 

their adiposity directly. Kendall’s tau estimates obtained for 

the measure of co-dependence between adiposity and 

abdominal circumference is 0.65 indicating strong 

dependence. Hence abdominal circumference can also be 

used as a substitute for the assessment of adiposity but BMI 

is a better substitute. It should be noted that here, the copula 

model that fits the bivariate data of adiposity and abdominal 

circumference is Clayton, having a non-elliptical distribution 

with no upper tail dependence. This suggests that for 

individuals having abdominal circumference values in the 

extreme upper tails their adiposity should be measured 

directly. 

It is observable that in this case, the Kendall’s tau estimate 

of dependence measure and that obtained by Pearson 

correlation coefficient are approximately the same and 

suggestive of the same conclusion. It is not surprising 

because the Gaussian copula model suggests a linear 

dependence for which the Pearson correlation coefficient is 

also an appropriate measure. In each of all other pairs, the 

corresponding values of these estimates are conspicuously at 

variance-suggestive of contradictory conclusions. For 

example, consider the pair percent body fat and abdominal 

circumference, where a Kendall’s tau estimate of 0.478 is 

obtained. This is within the limits of moderate dependence, 

hence the substitution of abdominal circumference for 

percent body fat cannot be strongly recommended. On the 

other hand, the corresponding estimate of Pearson correlation 

coefficient is 0.809. This is within the limit of very strong 

dependence and therefore, on the contrary, strongly suggests 

a substitution. This highlighted contradiction reflects in the 

results of all the other bivariate pairs. This is not surprising 

because for these pairs, the copula models have non-elliptical 

distribution for which Kendall’s tau is a more appropriate 

measure of co-dependence than the Pearson’s correlation 

coefficient. The contradiction highlighted supports the notion 

expressed in some literatures [1] that the use of Pearson’s 

correlation coefficient in estimating co-dependence for non-

elliptical bivariate distributions may lead to misleading 

conclusions. 

Kendall’s tau estimates for percent body fat and each of 

the anthropometric variables (BMI and abdominal 

circumference) are in the region of 0.4, which indicate only 

moderate dependence and consequently not suggestive of a 

substitution. However, it is interesting to look at the result of 

BMI and percent body fat pair as this provides an opportunity 

to contribute to the debate [29] of using BMI as a surrogate 

for percent body fat. Here a Kendall’s tau estimate is 0.415, 

not suggestive of using BMI as a substitute. But on the 

contrary, Pearson’s correlation coefficient estimate, 0.72, 

strongly supports using BMI as a substitute. It is therefore, 

tempting to adopt the conclusion from the Pearson 

correlation result more so when the estimated value is highly 

significant. However, if we assume a linear regression model 

for this dependence, a correlation coefficient estimate result 

of 0.72 will imply a coefficient of determination of 52%. 

That is, fifty-two percent of the variation in percent body fat 

is explained by fitting the linear regression model. The 

unexplained variation is 48%. This is too high and suggests 

that there are other important variables in the dependence 

structure that are not accommodated in the linear model. 

Hence, this estimated correlation coefficient obtained does 

not strongly suggest the use of BMI solely as a substitute. 

We, therefore, go with the suggestion [29] that for 

epidemiological research, there should be a direct 

measurement of percent body fat instead of using BMI as a 

substitute. We go further to suggest that for this study when 

Pearson correlation coefficient method is used, a coefficient 

of determination value of 75% should be obtained before any 

anthropometric variable can be recommended as a substitute 

for estimating body composition variables. 

10. Conclusion 

Copula-based bivariate K-epsilon distributions are 

derived. They are four copula types-Gaussian, Clayton, 

Frank and Gumbel copulas-fitted as models to 

anthropometric variables in order to capture the structure of 

their co-dependence. Appropriate fits were obtained and it 

was noted that Clayton model was best for four of the six 

pairs of variables examined. The fitted models suggest that 

the co-dependence structure can be described as general 

monotonic dependence in all the pairs considered except for 

the BMI and adiposity pair, which is a monotonic linear 

dependence. The results of the copula-based Kendall’s tau 

for estimating the measure of co-dependence very strongly 

suggest the use of BMI as the best substitute for adiposity 

in body composition assessment. In this scenario, for 

individuals having extreme values of BMI, their adiposity 

should be measured directly. Also, in this scenario, the 

result gives a strong indication for the use of abdominal 

circumference as a substitute. For percent body fat, there 

are no strong indications for the use of either BMI or 

abdominal circumference as a substitute. Hence, for 

epidemiological research it is better to measure percent 

body fat directly instead of using a surrogate estimate as 

suggested in some research based on Pearson correlation 

coefficient. 

It is noticeable that the Pearson’s correlation coefficient 

estimates of the measure of dependence are conspicuously 

higher than those of the Kendall’s tau, where they are not the 

appropriate measure to quantify the co-dependence structure. 

That is, in the scenario where the monotonic dependence is not 

linear, its use in such circumstance could prompt a misleading 

conclusion. Consequently, in studies where the Pearson’s 

correlation coefficient is used for determining an appropriate 

surrogate anthropometric variable, it is suggested that a 

coefficient of determination derivable from the estimated 

Pearson’s correlation coefficient be at least 75% before any 

recommendation can be advanced. It must be noted that this is 

a subjective criterion and as such allows the researcher to 

adjust the bench mark (75%) as appropriate in order to 

accommodate the peculiarities inherent in such study. 
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