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Abstract: Stakeholders in the construction industry work towards obtaining optimal concrete mixes with an aim of producing 

structures with the best compressive strength. In many instances, Kenya has witnessed collapse of buildings leading to death and 

huge financial loses, which has been associated largely to poor concrete mixes. This paper aims at evaluating the I-optimal 

designs for a concrete mixture experiment for both Equally Weighted Simplex Centroid Axial Design and Unequally Weighted 

Simplex Centroid Axial Design, based on the second-degree Kronecker model. Optimality tests are performed to locate the 

optimum values of a design. In various studies, I-optimality has been shown to be among the best criteria in obtaining the most 

optimal outcomes. In this study, Response Surface Methodology is applied in evaluating I-optimal designs, which are known to 

minimize average or integrated prediction variance over the experimental region. I-optimality equivalence conditions for the 

inscribed tetrahedral design and for the concrete experiment model are identical with the boundary points, mid-face points and 

the centroid, denoted by η2, η3 and η4 respectively. Equally, Weighted Simplex Centroid Axial Design proved to be a more 

I-efficient design than the Unequally Weighted Simplex Centroid Axial Design for both the tetrahedral design and the concrete 

model, with 87.85% and 79.54% respectively. The optimal response surface occurred in the region of the I-optimal designs. The 

Kronecker model derived from the concrete mixture experiment proved effective and efficient in describing the observed results. 

Keywords: I-Optimality, Tetrahedral, Efficiency, Equivalence, Average Prediction 

 

1. Introduction 

In the general mixture problem, the measured response is 

assumed to depend only on the proportions of the ingredients 

present in the mixture and not on the amount of the mixture 

according to [2]. The mixture ingredients �� , � = 1,2, … , 	 

are such that �� ≥ 0. The experimental region is given by the 

probability 

simplex �
 = �� = ���, … , �
�� ∈ �0,1�
: ∑ ��


��� = 1�, � ∈

�
. 
The objectives of the analysis of mixture data are to fit a 

proposed model for describing the shape of the response 

surface over the simplex factor space, and to determine the 

roles played by the individual components also alluded is that 

the same analysis may achieve these two objectives at once as 

said by [2]. Axial designs are defined as the designs with 

interior points �� = 0, �� = �
��� , ∀	! ≠ �  and �� = 1, �� =

0, ∀	! ≠ �,	 which contains the points of the form 

��#�����∆
� , ��∆

� , … , ��∆
� � and its permutations 

��
��� < ∆< 1, as 

described by [13]. 

An optimality criterion is one, which summarizes how good 

a design is, and it is maximized or minimized by an optimal 

design. I-optimal criterion is an information-based criterion, 

and unlike the D-optimal designs the I-optimal designs are not 

frequently used, as was noted by [12]. The D-optimal designs 

aims at precise model estimation while the I-optimal designs 

aims at obtaining precise predictions. For mixture experiments, 

the focus is to find certain responses for any given components 

proportions formulations, with an aim of obtaining the optimal 

responses from optimal settings with the best precision. D- 

and G-optimal designs for four ingredient mixture, were 

evaluated by [9]. This paper evaluates the same D-and 
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G-optimal designs with I–optimality criteria for a concrete 

mixture experiment to obtain precise predictions on outcomes. 

2. Methodology 

Some study that applied the Kiefer’s functions as optimality 

criteria to evaluate the designs in third degree Kronecker 

model mixture experiment for non-maximal subsystem of 

parameters was by [7]. This study chose I-optimality also 

known as the Q-optimality and as IV-, V-optimality as called 

by [5, 3] respectively. This optimality had started gaining 

popularity with experimenters because of its prediction 

capability as was noted by [6]. An inscribed tetrahedron 

weighted simplex centroid design suggested by [10] was 

applied. 

The second-degree Kronecker model and its subsystem of 

interest are given by (1) and (2) respectively. The latter is 

written in Lexicographic order as suggested by [4]. The model 

was utilized in obtaining the concrete regression model (18) 

which was analyzed in this study. 

&�'(� = )����* = �� ⊗ ���* = ∑ *����
, + ∑ �*�� + *�������



�,���,�.�



���                        (1) 

&�'� = *����
, + *,,�,

, + *//�/
, + *00�0

, + *�,���, + *�/���/ + *�0���0 + *,/�,�/ + *,0�,�0 + */0�/�0          (2) 

Two weighted designs for four components namely; 

Equally Weighted Simplex Centroid Axial Design (EWSCAD) 

and Unequally Weighted Simplex Centroid Axial Design 

(UWSCAD) were used to compare the I-optimality conditions 

for the concrete experiment model, which were evaluated 

against the I-optimality conditions of the inscribed tetrahedral 

design. 

Direct search for optimum designs could be difficult 

because it depends on the nature of response function, 

criterion function and the experimental region as was 

explained by [14]. 

The I-optimal criteria develops designs that minimizes the 

average or integrated prediction variance over the 

experimental regions given in (3) as given by [1]. 

1234563	254�5783 = 9 :;�<�=�>�?@:�<�A
9 B<A

         (3) 

Since the information matrix	C�D) in (3) is constant as far 

as the integration is concerned, the formula for the average 

variance can also be expressed as (4). 

9 )E���C�D���)���F� = �4�C�D��� 9 )���)E���F�G �G    (4) 

Prediction variance can be rewritten as (5) as was stated by 

[11]. 

123. 2 = �
9 B<A

	�4583�C�D��� 9 )���)E���F�G �   (5) 

A more convenient way of finding the average variance was 

obtained as given in (6) as shown by [11]. 

1234563	254�5783 = �
9 B<A

	�4583�C�D���H�      (6) 

The matrix B was obtained by the integral 

H = 9 I�
J�, I,

J,, … , I�
J�

KL?@
F��, F�,, … , F� J = ∏ N�JO#��L

OP@
NQ�#∑ JO

L
OP@ R = ∏ JO!L

OP@
�∑ JO#����!L

OP@
                     (7) 

T�� = U� ∏ JO!L
OP@

�∑ JO#����!L
OP@

�               (8) 

Average variance= �4�C��T�  and 	T = Γ�W�H .  L is the 

moment matrix since the elements are moments of a uniform 

distribution on the experimental region X���, and M is the 

information matrix of the full model. B is the matrix given as 

(9). Γ�W� = U = �W − 1�!  and C = I′ΛI , where I =
�)����, … , )Q�JR� is the \ × \ model matrix corresponding 

to \	 points of the simplex centroid design. Λ =
diag�4�b��, … , 4�b���, 4�, … , 4�  are the weights of the different 

design points. 

H	 =

c
d
d
d
d
d
d
d
d
d
d
e ��

0 ��
,�,

, ��
,�/

, ��
,�0

, ��
/�, ��

/�/ ��
/�0 ��

,�,�/ ��
,�,�0 ��

,�/�0
��

,�,
, �,

0 �,
,�/

, �,
,�0

, �,
/�� �,

,���/ �,
,���0 �,

/�/ �,
/�0 �,

,�/�0
��

,�/
, �,

,�/
, �/

0 �/
,�0

, �/
,���, �/

/�� �/
,���0 �/

/�, �/
,�,�0 �/

/�0
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,�0
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,�0
, �/
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, �0
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,�/
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/�, �,

,���0 ���,�/�0 �0
,���, �,

,�/�0 �,
,�0

, �0
,�,�/

��
,�/�0 �,

,�/�0 �/
/�0 �0

/�/ ���,�/�0 �/
,���0 �0

,���/ �/
,�,�0 �0

,�,�/ �/
,�0

, f
g
g
g
g
g
g
g
g
g
g
h

      (9) 

M is the information matrix under the I-Optimality, for the 

full Kronecker model whose average variance is given by 1234563	i54�5783 = �
9 B(j

�4�C�� 9 )���( )′���F��  (10) 
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The focus of this study was the subsystem of interest, hence 

the average variance was obtained by 

123. 254�5783 = �4�k��T�            (11) 

C is the information matrix of the subsystem of interest; this 

was represented by equations (18) and (19) for EWSCAD and 

UWSCAD respectively in [9]. 

The general equivalence theorem provides a methodology 

to check the optimality of a given continuous design, for any 

convex and differentiable design optimality criteria. 

  A continuous design with information matrix M for the full 

model is I-optimal if and only if 

)′���C��TC��)��� ≤ �4�C��T�        (12) 

As indicated by [1]. 

The subsystem of interest design points in the experimental 

region are I-optimal if and only if 

)����k��Tk��)��� ≤ �4�k��T�         (13) 

Efficiency of designs enables to find the better performing 

designs. Comparing the average variances of prediction m� 

and m,  for the designs D  and D∗  respectively, the 

I-efficiency is computed as bo:: = pq
p@

× 100. Equation (14) 

gave the working of I-efficiencies for this study. 

bo::�r� = (s�t∗?@u∗�>∗��
(s�t?@u�>�� × 100           (14) 

I-efficiency larger than 100% indicates that D∗  is better 

than D in terms of the average prediction variance. 

A study that obtained the values of the desired optimal 

design with respect to their corresponding information 

matrices, discovered that the D-A-E-G optimality designs at 

the boundary points were better than the designs obtained 

from interior support points as expressed by [15]. 

3. Results and Discussions 

The integrals of the 10 × 10 matrix are as shown in set of 

equations (15). The components are represented by i, j, k, w =
1,2,3,4, while n	and	m represent the rows and columns of the 

moment matrix L, the constant K = 6. The matrix L is a 

symmetric matrix along the main diagonal. 

C�� = U 9 ��
0F�� = /!0!

�0#0���! = �
/� , � = 7 = 1,2,3,4. 

C�
 = U 9 ��
,��

,F��F�� = �
,�� , �� ≠ !�, �7 ≠ 	� = 1,2,3,4. 

C�� = U 9 ��
,��

,F��F�� = �
,�� , �� ≠ !�, 7 = 5,6,7,8,9,10. 

C�
 = U 9 ��
/��F��F�� = �

�0� , � ≠ !                 (15) 

�7, 	� = ��1,5�, �1,6�, �1,7�, �2,5�, �2,8�, �2,9�, �3,6�, 

�3,8�, �3,10�, �4,7�, �4,9�, �4,10�� 

C�
 = U 9 ��
,����F��F��F�� = �

0,� , � ≠ ! ≠ �. 

�7, 	� = ��1,8�, �1,9�, �1,10�, �2,6�, �2,7�, �2,10�, �3,5�, 

�3,7�, �3,9�, �4,5�, �4,6�, �4,8�, �5,6�, �5,7�, �5,8�, �5,9�, 

   �6,7�, �6,8�, �6,10�, �7,9�, �7,10�, �8,9�, �8,10�, �9,10�. 

C�
 = U 9 ��������F��F��F��F�� = �
�0�.	   

� ≠ ! ≠ � ≠ �, w = 4	�7, 	� = �5,10�, �6,9�, �7,8�, 7 ≠ 	. 

The summarized workings in (15) are as shown in the 

moment matrix (16). 

H = �
�0�

c
d
d
d
d
d
d
d
d
e24 4 4 4 6 6 6 2 2 2

4 24 4 4 6 2 2 6 6 2
4 4 24 4 2 6 2 6 2 6
4 4 4 24 2 2 6 2 6 6
6 6 2 2 4 2 2 2 2 1
6 2 6 2 2 4 2 2 1 2
6 2 2 6 2 2 4 1 2 2
2 6 6 2 2 2 1 4 2 2
2 6 2 6 2 1 2 2 4 2
2 2 6 6 1 2 2 2 2 4f

g
g
g
g
g
g
g
g
h

   (16) 

The matrix T = Γ�W� × H = 6H          (17) 

T =
1

140

c
d
d
d
d
d
d
d
d
e24 4 4 4 6 6 6 2 2 2

4 24 4 4 6 2 2 6 6 2
4 4 24 4 2 6 2 6 2 6
4 4 4 24 2 2 6 2 6 6
6 6 2 2 4 2 2 2 2 1
6 2 6 2 2 4 2 2 1 2
6 2 2 6 2 2 4 1 2 2
2 6 6 2 2 2 1 4 2 2
2 6 2 6 2 1 2 2 4 2
2 2 6 6 1 2 2 2 2 4f

g
g
g
g
g
g
g
g
h

 

For optimality to suffice, LHS of the I-optimality 

equivalence inequality of each design point should be less or 

equal to �4583�ko
��T� = 73.9209  and �4583�k�

��T� =
64.9382  for EWSCAD and UWSCAD respectively. The 

LHS of the equivalence theorem given by )����ko
��Tko

��)��� 

and )����k�
��Tk�

��)��� respectively for each design points 

were given in tables 1 and 2 respectively. 

Table 1. I-optimality Equivalence Theorem for EWSCAD. 

Design LHS  ��������
���� Optimality 

�� 316.729 > 73.9209 Not optimal 

�, 48.904 < 73.9209 Optimal 

�/ 12.565 < 73.9209 Optimal 

�0 5.360 < 73.9209 Optimal 

Table 2. I-optimality Equivalence Theorem for UWSCAD. 

Design LHS  ��������
���� Optimality 

�� 292.042 > 64.9382 Not optimal 

�, 36.354 < 64.9382 Optimal 

�/ 9.676 < 64.9382 Optimal 

�0 3.700 < 64.9382 Optimal 

The design points	�,, �/57F�0, for the two designs attained 

the optimality according to the equivalence theorem. 
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The I-efficiency given by the equation (14) was utilized to 

compare the efficiencies of the two designs namely the 

EWSCAD and UWSCAD. It showed that bo:: = �0.�/�,
�/.�,�� ×

100 = 87.85%, meaning that the EWSCAD was a better design 

than the UWSCAD. 

A concrete experiment produced the regression model as 

given by (18) as was shown by [9]. &�'�� is the estimated 

compressive strength of concrete, while ��, �,, �/	57F	�0 

represented Water, Cement, Fine aggregate (Sand) and 

Coarse aggregate (Ballast), respectively. 

&Q'�R = 23.41��
, + 37.95�,

, + 37.31�/
, + 28.39�0

, + 34.93���, + 53.46���/ + 60.53���0 + 38.83�,�/ + 48.34�,�0 + 59.27�/�0.   (18) 

Table 3 represents the ANOVA table for the model (18). 

Table 3. Summarized Analysis of Variance for the concrete experiment. 

Sources of 

variations 

Degrees of 

freedom 

Sum of 

Squares 
MSS F 

Regression 9 136.703 15.189 2.10 

Residual 35 253.102 7.231  

Total 44 389.905   

The F calculated value is 2.10 and ���.�,�,/�� = 1.79, this 

showed that the model estimates were significant meaning that 

compressive strength of concrete varied on the different 

combinations of the components. 

 A stationary point of a response surface may be obtained 

by use of Canonical analysis, where the regression model is 

transformed to a new co-ordinate system, but the most 

straightforward way is to examine a contour plot of the fitted 

model as indicated by [8]. The data obtained from the 

experiment for this study was presented using the contours 

and response surfaces. 

The Figure 1 is the data boxplot that gives the descriptive 

statistics of the concrete experiment. It indicated that the 

median of the data is approximately 27.5�/		, . It also 

shows that the reading 31.509�/		, is an outlier. 

 

Figure 1. Concrete data Box plot. 

Figures 2, 3 and 4 shows the image, contours and the 

response surface respectively of one of the 4k, outcomes of 

the experiment. It shows how compressive strength was 

affected due to water and cement interaction. At a constant 

ratio of 0.4 of cement there was a steep descent of compressive 

strength as water was increased. 

 

Figure 2. Contour Image for Water vs. Cement. 

 

Figure 3. Contours for Water vs. Cement. 

 

Figure 4. Response surface for Water vs. Cement. 
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The T, matrix (19) of the concrete experiment Kronecker 

model below was obtained by the use of the integrals 

summarized in (16) and the betas in the regression model (18). 

The RHS I-Optimality values of the I-equivalence theorem 

for the Concrete model of EWSCAD were obtained from (20) 

the matrix ko
��T,. Where ko

�� is the inverse of matrix (18) as 

done by [9]. 

c
d
d
d
d
d
d
d
d
e15.658 4.231 4.159 3.165 5.841 8.939 10.121 2.164 2.694 3.304

4.231 41.147 6.742 5.130 9.469 4.830 5.469 10.526 13.104 5.355
4.159 6.742 39.772 5.044 3.103 14.427 5.377 10.348 4.294 15.795
3.165 5.130 5.044 23.028 2.361 3.614 12.275 2.625 9.803 12.019
5.841 9.469 3.103 2.361 5.810 4.460 5.034 3.229 4.020 2.465
8.939 4.830 14.427 3.614 4.460 13.609 7.705 4.943 3.076 7.544

10.121 5.469 5.377 12.275 5.034 7.705 17.447 2.798 6.967 8.542
2.164 10.526 10.348 2.625 3.229 4.943 2.798 7.180 4.469 5.480
2.694 13.104 4.294 9.803 4.020 3.076 6.967 4.469 11.127 6.822
3.304 5.355 15.795 12.019 2.465 7.544 8.542 5.480 6.822 16.728f

g
g
g
g
g
g
g
g
h

       (19) 

The RHS of (13) for the Concrete model with equal weights 

was 1. i = �4�ko
��T,� = 17,477.51 . The design points 

should be I-optimal if and only if )����ko
��T,ko

��)��� ≤
17,477.51. 

The RHS of (13) for the Concrete Kronecker model with 

unequal weights was 1. i = �4�k�
��T,� = 13,902.12. The 

design points are I-optimal if and only if 

)����k�
��T,k�

��)��� ≤13,902.12. 

The concrete model has showed that the designs 

�,, �/57F	�0  achieved the optimality condition, for both 

EWSCAD and UWSCAD as shown in [Table 4]. The 

efficiency of the two designs on the concrete experiment 

using (14) was, b8o:: = �/,��,.�,
��,0��.�� × 100 = 79.54%. 

EWSCAD turned out to more I-efficient than UWSCAD. 

4. Conclusion 

The results on I-optimality and efficiency for the inscribed 

tetrahedral design and the concrete experiment were identical. 

c
d
d
d
d
d
d
d
d
e

740.35 386.99 203.52 107.95 109.90 17.642 −39.45 204.12 255.92 271.83
710.19 4090.38 1117.90 767.11 867.70 913.90 1012.37 944.58 1101.53 978.84
289.31 634.88 3244.16 370.73 296.22 726.81 529.08 617.71 446.76 783.75
−39.84 52.28 24.28 1139.65 40.88 95.63 −44.06 71.95 51.17 −5.35

−1222.6 −2344.04 −19.45 −519.16 −164.25 −1107.08 −1570.7 −765.23 −1217.99 122.69
390.29 864.82 −357.02 −379.26 181.22 1886.89 −453.14 −34.99 354.02 −748.68

1034.44 728.49 29.82 673.66 382.19 191.86 3236.62 312.24 207.43 −115.1
−248.58 −1989.78 −2579.99 −509.43 −655.16 −1377.44 26.25 −126.62 −1101.15 −1699.13
−147.76 −510.28 153.51 −692.34 −273.36 291.7 −928.16 −251.06 1058.09 −98.72
−609.20 106.91 113.44 250.06 −98.72 −615.16 −723.93 −106.65 −170.74 2372.25 f

g
g
g
g
g
g
g
g
h

    (20) 

Likewise, the RHS I-Optimality values of the I-equivalence theorem for the Concrete model of UWSCAD were obtained. The 

matrix (21) which is k�
��T, was obtained from the product of matrix T, (19) above and inverse of matrix k� (19) of [9]. 

c
d
d
d
d
d
d
d
d
e 732.18 442.61 248.64 95.58 123.99 41.82 −30.63 188.26 213.11 206.87

615.27 3889.48 1047.52 672.30 797.96 771.85 827.48 885.26 1015.96 825.01
256.46 273.64 3121.01 334.24 260.72 687.81 415.39 605.64 388.32 742.33
−31.62 164.91 103.14 1132.30 37.46 65.67 −17.34 79.45 95.60 40.54

−889.19 −2021.14 −106.53 −384.93 −183.35 −731.27 −1013.83 −589.28 −887.73 −101.41
183.73 516.68 −597.91 −202.07 120.21 1182.02 −222.59 −70.35 154.52 −497.72
645.51 569.25 185.11 370.07 299.41 244.59 2186.44 217.73 206.83 52.60

−276.86 −1852.20 −2412.19 −431.15 −545.03 −1032.21 −233.69 −249.23 −835.69 −1230.35
−141.08 −830.14 48.84 −600.51 −257.32 48.87 −611.16 −244.15 582.12 −508.03
−312.16 152.68 −264.04 63.85 −56.26 −378.34 −367.92 −76.73 −56.13 1509.16 f

g
g
g
g
g
g
g
g
h

    (21) 

The design points �,, �/57F�0, for the two designs and the 

experiment attained the same optimality conditions by use of 

the I-optimal equivalence inequality. EWSCAD was a more 

efficient design than UWSCAD. The response surface shown 

by figure 2 showed that the lowest line of descent also fell on 

the I-optimal design points. The I-optimality criterion being 

one that reduces average prediction variance, does optimize 

outcomes more than any other criteria does. For further studies, 

another simplex centroid axial design may be used to evaluate 

the same I-optimality conditions to create an experimental 

design, which would otherwise be evaluated for the same. 

Table 4. Optimality values for the Concrete model. 

 Design point �� � �� �  Remark 

�� 

0.1�7,1,1,1� 19,021.4 17,196.14 Not Optimal 

0.1�1,7,1,1� 77,562.46 69.009.86 Not Optimal 

0.1�1,1,7,1� 59,897.66 54,036.29 Not Optimal 

0.1�1,1,1,7� 26,686.15 24,253.16 Not Optimal 

�, 

0.1�4,4,1,1� 8,070.3 4,991.74 Optimal 

0.1�4,1,4,1� 12,563.3 7,034.65 Optimal 

0.1�4,1,1,4� 12,509.7 6,246.03 Optimal 

0.1�1,4,1,4� 12,103.6 7,214.64 Optimal 
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 Design point �� � �� �  Remark 

0.1�1,1,4,4� 14,231.8 7,954.72 Optimal 

0.1�1,4,4,1� 10,250.9 6,803.42 Optimal 

�/ 

0.1�3,3,3,1� 1,922.27 1,397.19 Optimal 

0.1�3,3,1,3� 2,140.67 1,513.79 Optimal 

0.1�3,1,3,3� 3,085.06 2,076.86 Optimal 

0.1�1,3,3,1� 2,426.19 1,738.49  

�0 �1
4 , 1

4 , 1
4 , 1

4� 819.462 595.557 Optimal 
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