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Abstract: There are many studies dealt with univariate time series data, but the analysis of multivariate time series are rarely 

discussed. This article discusses the theoretical and numerical aspects of different techniques that analyze the multivariate time 

series data. These techniques are ANN, ARIMA, GLM and VARS models. All techniques are used to analyze the data that 

obtained from Egypt Stock Exchange Market. R program with many packages are used. These packages are the "neuralnet, nnet, 

forecast, MTS and vars". The process of measuring the accuracy of forecasting are investigated using the measures ME, ACF, 

MAE, MPE, RMSE, MASE, and MAPE. This is done for seasonal and non-seasonal time series data. Best ARIMA model with 

minimum error is constructed and tested. The lags order of the model are identified. Granger test for causality indicated that 

Exchange rate is useful for forecasting another time series. Also, the Instant test indicated that there is instantaneous causality 

between Exchange rate and other time series. For non-seasonal data, the NNAR() model is equivalent to ARIMA() model. Also, 

for seasonal data, the NNAR(p,P,0)[m] model is equivalent to an ARIMA(p,0,0)(P,0,0)[m] model. For these data, we concluded 

that the ANN and GLMs of fitting multivariate seasonal time series is better than multivariate non-seasonal time series. The 

transactions of Finance, Household and Chemicals sectors are significant for Exchange rate in non-seasonal time series case. The 

forecasts that based on stationary time series data are more smooth and accurate. VARS model is more accurate rather than VAR 

model for ARIMA (0,0,1). Forecasts of VAR values are predicted over short horizon, because the prediction over long horizon 

becomes unreliable or uniform. 

Keywords: ANN, GLM, ARIMA, VARS, Backpropagation, RMSE, Causality Test, Instant Test 

 

1. Introduction 

Time series analysis is one of the most important processes 

that many companies and even many countries need. These 

companies or countries need to forecast the behavior of some 

phenomenon in the future. Not only for univariate time series 

analysis but also for multivariate time series analysis. 

Artificial neural networks (ANN) have become one of the 

most important methods of artificial intelligence in the 

processes of forecasting, and given that many recent articles 

do not deal much with the processes of multivariate analysis, 

whether by the autoregressive integrated moving average 

(ARIMA) models or ANNs models. We will combine both 

methods to forecast multivariate time series about 

applications are based on real data using some of R program 

packages. In addition to these two methods, we will use both 

the vector autoregressive models (VARS) and the generalized 

linear models (GLMs) for multivariate time series analysis, 

and then try to find which one of these methods is better. 

The predictors form the ANN bottom layer, and the 

forecasts form the top layer. Intermediate layers containing 

hidden neurons. The simplest networks contain no hidden 

layers, this is equivalent to linear regressions. The coefficients 

attached to these predictors called weights. The weights are 

selected in the NN framework using a learning algorithm that 

minimizes the costs. The number of nodes in each hidden 

layer must be specified. We can consider ANN as a nonlinear 

statistical data. Complex relations between inputs and outputs 

are happened. ANNs have been applied to numerous 

applications in many field including pharmaceutical research, 

engineering and medicinal chemistry. ANNs were used in 

drug discovery. It allows the estimation of some non-linear 

models without need to define an accurate functional. There 

are many ancient and recent researches and articles have 
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presented the comparisons between the ARIMAs and the 

ANNs, in the process of forecasting the univariate time series. 

Intrator and Intrator [1] used NN for interpretation of 

nonlinear models. Zhang et al. [2] introduced the forecasting 

with ANNs. A comparison between NN and Box-Jenkins 

forecasting techniques with application to real data devoted by 

Al-Shawadfi [3]. Hothorn et al. [4] have designed and analysis 

of benchmark experiments. LiHong et al. [5] devoted the NNs 

based drug discovery approach and its application for designing 

aldose reductase inhibitors. Zou and Zhou [6] presented QSAR 

study of oxazolidinone antibacterial agents using ANNs. 

Eugster et al. [7] introduced exploratory and inferential analysis 

of benchmark experiments. Kose [8] presented modelling of 

color perception of different age groups using ANNs. 

Al-Shawadfi and Hagag [9] have suggested that the ANN 

approach may provide a superior alternative to the Box-Jenkins 

forecasting approach for developing forecasting models in 

situations that do not require modeling of the internal structure 

of the series. The numerical results showed that the approach 

has a good performance for the forecasting of ARMAX models. 

Rostampour et al. [10] used an ANN for prediction of apple 

bruise damage. Doreswamy and Chanabasayya [11] presented a 

performance analysis of NN models for oxazolines and 

oxazoles derivatives descriptor dataset. Hanjouri and Qamar 

[12] have devoted two methods for analyzing and forecasting 

time series data. The two methods aimed to compare Box and 

Jenkins models, and the ANN to forecast global sugar prices. 

The analysis of sugar price data reversed the superiority of the 

ARIMA time series model and gave more accurate predictions 

than ANNs. 

This paper discusses the theoretical aspects of different 

techniques and models that analysis time series data and will 

concentrate on the multivariate time series data. These 

techniques are ANN, ARIMA, GLM and VARS models. All 

models are used to analyze the multivariate time series data 

that obtained from Egypt Stock Exchange Market. The R 

program with many packages and functions are used. 

This paper can be organized as follow: Section 2 presents 

some materials, algorithms and models that deal with 

multivariate ordinary, time series, seasonal data. Section 3 

presents the numeric analysis section divided into some 

subsections devoted the features of dataset, and the results of 

analysis dataset using the previous methods. Section 4 

presents the discussion of obtained results for all models. 

Section 5 presents the conclusions of this article 

2. Materials, Algorithms and Models 

In this section, we will refer to some materials, algorithms 

and models that are used in this paper: 

2.1. ARIM Models 

ARIMA model is a generalization of ARMA model. Both of 

them fitted to time series data either to better understand or 

forecast. ARIMA models are applied where there 

non-stationary case. Non-seasonal ARIMA models denoted 

ARIMA(p,d,q), where p is an order of the autoregressive model, 

d is the degree of differencing, and q is the order of the MA 

model. An order p and q can be determined using the sample 

autocorrelation function (ACF), partial autocorrelation function 

(PACF). Other alternative methods like AIC, BIC, etc. are used 

to determine an order of a non-seasonal ARIMA model. 

Seasonal ARIMA models are denoted 

ARIMA(p,d,q)(P,D,Q)[m], where m refers to the number of 

periods in each season. P,D,Q refer to the autoregressive, 

differencing, and moving average terms for the seasonal part of 

the ARIMA model. ARIMA(1,0,0)represents AR(1), ARIMA 

represents I(1), and ARIMA(0,0,1) represents MA(1). ARIMA 

models can be estimated according to Box–Jenkins technique. 

VARIMA model may be suitable if multiple time series are 

used then. Sometimes a seasonal effect on the model, 

SARIMA (Seasonal ARIMA) model is better to use. The 

non-stationary ARIMA model can be written as: 

1 1( )d

t tY L X= − −  

Where t is an integer index, L is the lag operator, and 

the Xt are time series data, and d-dimensional 

multivariate time series. 
While the stationary ARIMA cab be written as: 

1 1

1 1( ) ( )
p p

i i

i t i t

i i

L Y Lϕ θ ε
= =

− = +∑ ∑  

Where iϕ  are the parameters of AR part, iθ are the 

parameters of MA part, and tε  are error terms. The tε  are 

generally assumed to be "iid" variables from normal 

distribution with zero mean. Useful criterion is AIC: 

AIC 2log( ) 2( )L p q k= − + + +  

Where L is the likelihood function, p is the order of AR part 

and q is the order of MA part, and k represents the intercept of 

the ARIMA model. 

2( )( 1)
AICc AIC

1

p q k p q k

T p q k

+ + + + −= +
− − − −  

BIC criterion is: 

BIC (log ( ) 2)( )eAIC T p q k= + − + +  

The aim is minimizing AIC, AICc or BIC values for a good 

model. The lower value, the better model. AIC tries to 

approximate models towards the reality. BIC attempts to find 

the perfect fit. BIC is useful method for selection models 

having more parameters. AICc is used to compare ARIMAs 

with same orders differencing. Also, the root of mean squared 

error (RMSE) can be used for comparing ARIMAs with 

different orders differencing. [13-17] 

2.2. Artificial Neural Networks (ANNs) 

ANN consists of Input layers, Hidden layers, and Output 
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layers. A first layer of ANN receives the raw input, processes 

it, using Back-propagation algorithm, and passes the 

processed information to the hidden layers. The hidden layer 

passes the information to the last layer, which produces the 

output. ANN is characterized by an activation function. The 

activation function is often defined by the range [-1,1] or [0,1], 

and that function may be is linear or nonlinear, and can be in 

several shapes like: 

(1). 
2

2
( ) 1

1 e x
g x = −

+
. 

(2). 
1

( ) 1
1 e x

g x −= +
+

. 

(3). 
0 , 0,

( )
1 , .

if x
g x

otherwise

 <= 


 

(4). 
2

2( ) e
x

g x = . 

A perceptron (single layer ANN) receives multidimensional 

input and processes it using a weighted summation and an 

activation function. A major limitation of perceptron model is 

its inability to deal with non-linearity. A multilayered ANN 

overcomes this limitation and helps to solve non-linear 

problems. Figure 1 displays the simple ANN structure: 

 

Figure 1. Artificial Intelligence – Simple ANN– Tutorials point 

The most basic type of ANN is called Feed-forward, an 

information flow in only one direction. A unit used to send 

information to another unit that does not receive any 

information. A second type is Feed-back, the information can 

flow in multiple directions. Feed-back ANN allows Feed-back 

loops. The Back-propagation is used to calculate the error at 

the output unit. This error is back-propagated to all the units 

such that the error at each unit is proportional to its 

contribution towards the total error. The errors at each unit are 

used to optimize the weight at each connection. We can use 

linear regression as a more efficient method of training the 

model. If we add an intermediate layer with hidden neurons, 

the ANN becomes non-linear. This is known as a multilayer 

Feed-Forward ANN, where each layer of nodes receives 

inputs from the previous layers. The outputs of the nodes in 

one layer are inputs to the next layer. The inputs to each node 

are combined using a weighted linear combination. The result 

is modified by a nonlinear function before being output. 

When we train ANN, we divide dataset into three sets. 

Training set, Validation dataset and Test set. Training set is 

used to find the relationship between dependent and 

independent variables. The test set assesses the performance 

of model. The experimental performance of set of ANN 

models are estimated, compared, and ordered.. The commonly 

cross validation (CV) technique is that the k-fold cross 

validation. This method can be referred as a resampling 

process. Every data point gets a chance to be in test set and 

training set, thus this method reduces the dependence on 

test-training split and reduces the variance of performance. 

The extreme case of k-fold CV will occur when k is equal to 

number of data points.  

We have evaluated our ANN model using the residual 

methods such as RMSE for the test set. [18-21] 

2.3. Packages of ANN and ARIMA Time Series Models 

There are many packages allow us to compute ANN models. 

We can apply the algorithm of ANN regression model using 

the "neuralnet" package after scaling the data, and splitting it 

to train and test sets. Train ANNs using the Back-propagation, 

Resilient Back-propagation with or without weight 

back-tracking, or using the globally version.  

The ("forecast","nnet") packages are used for ANN time 

series forecasting using Feed-Forward ANN with a single 

hidden layer and lagged inputs for forecasting univariate time 

series. The "nnetar" function fits the model. A total of repeats 

networks are fitted. For non-seasonal data, the fitted model is 

denoted as an NNAR(p,0,k) model, where k is the number of 

hidden nodes. This is analogous to AR(p) model but with 

non-linear functions. The default is the optimal number of lags 

according to the AIC for linear AR(p) model. For seasonal 

data, the fitted model is called an NNAR(p,P,k)[m] model, 

which is analogous to an ARIMA(p,0,0)(P,0,0)[m] model but 

with nonlinear functions. 

With seasonal data, we add the last observed values from 

the same season as inputs. For example, NNAR(3,1,2) [12] 

model has inputs, 
3[ ],....,t -1 t - 2 t - t -12y , y , y y , and two 

neurons in the hidden layer. NNAR(p,P,0)[m] model is 

equivalent to an ARIMA(p,0,0)(P,0,0)[m] model without the 

restrictions on the parameters that ensure stationarity. [22-26] 

2.4. VARS Models 

The vector autoregressive models (VARS) are used for 

multivariate time series. Each variable is a linear function of 

the past lags of itself and the past lags of other variables. 

Suppose that three different time series variables, denoted by 

( ,1) ( ,2),t tx x and ( ,3)tx . VAR of order 1 is denoted by VAR(1), 

can be presented as: 

( ,1) 1 11 1,1 12 1,2 13 1,3 ,1

( ,2) 2 21 1,1 22 1,2 23 1,3 ,2

( ,3) 3 31 1,1 32 1,2 33 1,3 ,3

t t t t t

t t t t t

t t t t t

x x x x w

x x x x w

x x x x w

α φ φ φ
α φ φ φ
α φ φ φ

− − −

− − −

− − −

= + + + +

= + + + +

= + + + +
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Each variable is a linear function of the lag 1 values for all 

variables in the set. In a VAR(2) model, the lag 2 values for all 

variables are added to the right sides of the equations, In the 

case of three variables (time series), there would be 6 

predictors on the right side of each equation: 3 lags 1 terms 

and 3 lags 2 terms. In general, for VAR(p) model, the first p 

lags of each variable in the system would be used as regression 

predictors for each variable. VAR models are a specific case of 

more general VARMA models. VARMA models for 

multivariate time series include the VAR structure above 

along with moving average terms for each variable. These are 

special cases of ARMAX models that allow for the addition of 

other predictors that are outside the multivariate dataset. Here, 

we will fit the model of the form: 

1t t t t
x u x wφ −= Γ + +  

where 
tu = (1,t) ′ includes terms to simultaneously fit the 

constant and trend. 

Granger causality test is a statistical test for determining 

whether one time series is useful in forecasting another time 

series. A time series X is said to Granger-cause Y if it can be 

shown that those X values provide statistically significant 

information about future values of Y (using F test). 

Multivariate Granger causality analysis is performed by VAR 

to the time series. Let 
1

( )
d

x t
×∈ℝ  for d-dimensional 

multivariate time series. Granger-causality is performed by 

fitting a VAR model with L time lags as follows: 

1

( ) ( ) ( )
L

x t A X t tτ
τ

τ ε
=

= − +∑  

Where ( )tε  is a Gaussian random vector, and Aτ is a 

matrix for every lag, for 1,...., Lτ = . Time series 
iX  is 

called Granger cause of another time series,
jX , if at least one 

of elements ( , )A j iτ  
is significantly larger than zero. [27-28] 

2.5. Accurate Measures (AMs) 

There are some measures of model accuracy that reflects 

how much the predicted values close to the actual observed 

values. The measure ME  refer to Mean Error, MAE  refers 

to Mean Absolute Error, and presents information on long 

term performance of the models, the lower MAE  the better 

is the long term model prediction. MAPE  refers to Mean 

Absolute Percentage Error. MSE  refers to Mean Squared 

Error. The differences between MSE  and MAPE  in 

determining the accuracy of a forecast. MSE  is 

scale-dependent, MAPE is not. MAPE measures the 

accuracy across time series with different scales. MAPE  is 

preferred because. MAPE  also cannot be used when the 

time series take zero values. MASE  refers to Mean Absolute 

Scaled Error, it is fraction between MAE of the forecast 

values, and MAE  of the in-sample one-step naive forecast. 

RSE  refers to Relative Squared Error, the lower RSE  the 

better model prediction. MPE  refers to Mean Percent Error, 

it is well known measure that corrects the results, and can be 

used to analyze different predictions. RMSE refers to Root 

of MSE , it is easily to interpret the model accuracy, the 

lower RMSE , the more accurate. Coefficient of 

determination
2R , it is used also for comparison between the 

ANN models. The
2R measures the variance that is 

interpreted by the model. The problem of residual evaluation 

methods is that: it does not inform us about the model 

behavior when new data is introduced. We overcome this 

problem by splitting our data into training and test set. 

Constructing the model on training set, and evaluating the 

model by calculating RMSE for the test set. These measures 

are good measures of the overall predictive accuracy. [29-33] 

The expressions of all measures are given below: 

2

2 2 1
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1

2

1

21 1
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3. Numeric Analysis 

ANNs are used to solve many artificial intelligence 

problems. They often better than the traditional machine 

learning models because they deal with non-linearity variable 

relations, and customization. In this section, first we specify 

the used dataset indicate its features and decompose the 

periodic time series. Then we apply the technique of ANN 

regression model using the "neuralnet" package after scaling 

(normalizing) the original data and test the ANN predictions. 

Then, we deal with the same dataset as a time series and apply 
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the nnetar() function to fitting the multivariate time series and 

explain predictions accuracy. After that we decompose the 

seasonal data and applied the same function on the seasonal 

data and also explain the predictions accuracy. Finally, we 

apply the GLM on the multivariate time series and seasonal 

data and got some comparable results. In the other way we 

discuss the ARIMA analysis beginning with checking the 

stationary of time series and transform it to stationary time 

series using the difference way. Finally, we use the VARS 

modeling via determining the maximum lags according to 

many criteria and test the causality and instantly of the best 

ARIMA model, and forecast the VAR model. 

3.1. Dataset Features 

In this study, the selected data are explained the average 

monthly Exchange Rate values, and the related monthly 

transactions values for some sectors in the Egypt Stock 

Exchange Market, during the period from January 2015 to 

February 2019. Therefore, we divided these data into 13 

variables, the first one is an independent variable (represents the 

average monthly Exchange rate), and the remaining 12 

variables (represent the monthly transactions values' sectors) 

that are dependent variables (not as a group). These sectors are: 

Communications, Financial services (excluding Banks), Real 

Estates, Tourism and Entertainment, Construction and Building, 

Household and Personal Products, Services Industrial Products 

and Cars, Food and Beverages, Banks, Healthcare and 

Medicines, Basic Resources, and Chemicals. The aim of this 

study is to know whether or not there is a statistically significant 

effect of the Exchange rate on the transactions values of the 

sectors in the Egypt Stock Exchange. 

The plots of multivariate time series data can be displayed 

in Figure 2: 

 

Figure 2. Multivariate time series plots. 



 American Journal of Theoretical and Applied Statistics 2021; 10(1): 72-88 77 

 

We can construct the seasonal, trend and remainder time series (for example; Exchange rate), in Figure 3. 

 

Figure 3. Seasonal, trend and periodic time series Exchange rate plots. 

3.2. ANN of Multivariate Non-time Series Data 

The "neuralnet" package, and the "neuralnet" function are 

used to construct the ANN and fit the multivariate non-time 

series data. Now we fit a ANN on our data. The first step is to 

scale the real dataset. Using unscaled may lead to meaningless 

results. The common techniques to scale data are: min-max 

normalization, Z-score normalization, median and MAD, and 

tan-h estimators. We scaled (normalized) all data to get 

reasonable results since error = 18264160, and the reached 

threshold =0.000948. In addition, we discuss the results for the 

original data and the data as a seasonal data. We can split the 

data to 70% as the train data and 30% as test data. We used the 

"neuralnet" function to fit the model that the inputs represented 

by Exchange rate and the outputs the transactions' sectors. 

Figure 4 displays the ANN fitted model for multivariate 

scaled data. 

 

Figure 4. ANN fitting plot of multivariate non-time series data. 
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Table 1 presents ANN fitted model: 

Table 1. ANN fitted model. 

Sectors Intercept Hidden layer 

Exchange rate - 3.707 -6.269 

Communications 0.489 -0.893 

Finance 0.694 -1.411 

R. Estates 0.619 -1.173 

Tourism 0.557 -1.189 

Building -0.044 -0.208 

Household 0.659 -1.334 

Cars 0.680 -1.499 

Foods 0.427 -0.663 

Banks 0.490 -0.833 

Health 0.473 -0.935 

Basic resources 0.767 -1.502 

Chemicals 0.824 -1.797 

Error = 158.984 Threshold (reached) = 0.0096 

Table 2 presents ANN first three predicted values for 

transactions' sectors: 

Table 2. ANN first three predicted values for the sectors' variables. 

Sectors 1 2 3 

Communications -0.38789 -0.38783 -0.38782 

Finance -0.68957 -0.68947 -0.68946 

R. Estates -0.53095 -0.53087 -0.53086 

Tourism -0.60827 -0.60818 -0.60817 

Building -0.24839 -0.24837 -0.24837 

Household -0.64944 -0.64934 -0.64933 

Cars -0.79027 -0.79016 -0.79015 

Sectors 1 2 3 

Foods -0.22296 -0.22291 -0.22290 

Banks -0.32610 -0.32604 -0.32604 

Health -0.44329 -0.44322 -0.44322 

Basic resources -0.70672 -0.70661 -0.70659 

ANN model of non-time series data indicates that: 

RMSE for Predicted values, using test set, for Dependent 

variables = 2.0279. 

R
2
 for Predicted values, using test set, for Dependent 

variables = 0.896. 

RMSE for Predicted values, using test set, for Exchange 

rate as dependent variable = 0.1685. 

R
2
 for Predicted values, using test set, for Exchange rate as 

dependent variable = 0.987. 

With one hidden layer, the error = 158.984 and reached 

threshold = 0.0096. 

Exchange rate forecasts: -1.1711 -0.9314 -0.7289 

These values reflects the model is accurate. 

3.3. ANN of Non-Seasonal Multivariate Time Series Data 

In this subsection, we used the "nnet" package to fit the time 

series data for all variables. We used the Exchange rate as a 

x-regressor time series. And used the "nnetar()" function for 

fitting all time series (12 variables as a time series) separately. 

For accuracy model, we can present the next measures' 

values in Table 3: 

Table 3. Accuracy values for each variable from training set (Non-seasonal data). 

Sector X-reg. ACF ME RMSE MAE MPE MAPE MASE 

Communications Ex. rate -0.0476 2.3451 224.334 157.669 -3.1299 8.5984 0.11056 

Finance Ex. rate 0.1214 0.1485 1122.744 873.023 -7.561 21.7126 0.52823 

R. Estates Ex. rate 0.0797 0.7949 1328.13 889.397 -9.8352 23.0351 0.48841 

Tourism Ex. rate -0.0981 -0.2458 239.565 162.456 -16.422 32.1062 0.44172 

Building Ex. rate 0.0006 0.1632 232.354 173.242 -16.035 33.9895 0.28886 

Household Ex. rate -0.0361 -0.1948 218.709 147.582 -9.8535 20.7944 0.20352 

Cars Ex. rate -0.0308 -0.1221 149.835 120.671 -9.3211 18.655 0.18719 

Foods Ex. rate 0.0661 0.0215 0.2858 0.2076 0.0052 0.0279 0.00028 

Banks Ex. rate -0.0765 0.0394 2.999 1.5661 0.00026 0.0675 0.00203 

Health Ex. rate 0.1888 0.3479 151.9816 124.2541 -51.611 72.823 0.33016 

B. resources Ex. rate 0.0338 -0.1550 337.6927 265.118 -16.755 34.683 0.47259 

Chemicals Ex. rate 0.0362 0.0362 4.0454 2.00349 -0.18973 1.2265 0.00418 

Exchange rate X- reg. -0.3545 0.00003 0.00289 0.00189 0.0001 0.0119 0.00056 

3.4. ANN of Multivariate Seasonal Time Series Data 

Here we decompose the time series data to get the seasonal data. Accuracy values for seasonal data presented in Table 4: 

Table 4. Accuracy values for each variable from training set (Seasonal data). 

Sector X-reg. ACF ME RMSE MAE MPE MAPE MASE 

Communications Ex. rate -0.2249 -0.0223 237.964 183.146 -3.6289 10.1586 0.12843 

Finance Ex. rate -0.0092 0.0533 1035.24 764.067 -10.989 22.933 0.4623 

R. Estates Ex. rate 0.0627 1.7822 1122.20 822.218 -10.6387 24.538 0.4515 

Tourism Ex. rate -0.0649 0.0263 248.291 184.628 -17.0418 35.0971 0.502 

Building Ex. rate -0.0878 0.1818 197.79 142.961 -18.69 34.4997 0.2384 

Household Ex. rate 0.0254 0.1542 194.428 136.742 -11.8317 21.9256 0.1886 

Cars Ex. rate -0.1207 -0.2693 140.97 110.41 -9.069 17.76 0.1713 

Foods Ex. rate 0.1852 0.0063 0.2676 0.196 -0.003 0.0278 0.0003 

Banks Ex. rate 0.0734 0.4845 6.557 3.309 0.0018 0.1587 0.004 

Health Ex. rate -0.2548 -0.057 204.65 140.506 -37.548 56.74 0.373 
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Sector X-reg. ACF ME RMSE MAE MPE MAPE MASE 

B. resources Ex. rate 0.1144 0.0404 290.72 232.128 -19.36 35.93 0.414 

Chemicals Ex. rate 0.2837 -0.0008 9.945 4.7837 -0.5022 1.53 0.00998 

Exchange rate X- reg. -0.3093 -0.00001 0.00021 0.00015 -0.00651 0.0357 Inf 

 

The AMs values of seasonal time series Exchange rate, 

reset time series are x-regressors, are lower than the AMs 

values for non-seasonal time series Exchange rate. This 

indicates that the ANN model of seasonal time series is better. 

3.5. GLM of Non-Seasonal Time Exchange Rate 

Table 5 presents the results of GLM fitting for non-seasonal 

Exchange rate: 

Table 5. Results of GLM fitting for non-seasonal time series Exchange rate" 

Exchange rate (GLM) Estimate Std. Error t value P-value 

Intercept 8.523 1.484 5.742 0.000001 *** 

Communications -0.0007 0.0005 -1.320 0.1949 

Finance 0.0012 0.0005 2.318 0.0261 * 

R. Estates 0.0001 0.0007 0.123 0.9027 

Tourism -0.001 0.0018 -0.559 0.5793 

Building -0.00018 0.0002 -0.745 0.4608 

Household -0.0022 0.001 -2.209 0.033* 

Cars 0.00195 0.00099 1.966 0.0569 

Foods 0.000005 0.00057 0.008 0.9935 

Banks -0.0007 0.0009 -0.793 0.4329 

Health 0.00066 0.0013 0.493 0.6247 

Basic resources 0.0006 0.0023 0.260 0.7963 

Chemicals 0.0069 0.00186 3.715 0.0007 *** 

 

Figure 5. GLM fitting of non-seasonal time series Exchange rate. 

Residual deviance: 325.51 AIC: 263.56 
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Figure 6. Predictions for 3 non-seasonal time series Exchange rate. 

Exchange rate non-seasonal forecasts: 17.777 17.778 17.778 

3.6. GLM of Seasonal Time Series Exchange rate 

Table 6 presents the results of GLM fitting for seasonal time series Exchange rate: 

 

Figure 7. GLM fitting for seasonal time series Exchange rate. 
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Table 6. Results of GLM fitting for seasonal Exchange rate. 

Exchange rate (GLM) Estimate Std. Error t value P-value 

Intercept -1.039 0.3.891 -2.671 0.0112 * 

Communications 0.00017 0.00013 1.288 0.2057 

Finance -0.00016 0.0001 -1.230 0.2265 

R. Estates 0.000236 0.00017 1.338 0.1890 

Tourism 0.0003 0.00048 0.624 0.5362 

Building 0.00001 0.00006 0.220 0.8268 

Household -0.00016 0.00026 -0.605 0.5491 

Cars 0.00012 0.00026 0.466 0.6443 

Foods 0.0001 0.00015 0.924 0.3614 

Banks 0.00024 0.0002 1.006 0.3210 

Health 0.0007 0.00035 1.947 0.0592 

Basic resources -0.0005 0.0006 -0.797 0.4304 

Chemicals -0.0004 0.0005 -0.814 0.4211 

Figure 7 displays the GLM fitting for seasonal time series Exchange rate: 

Residual deviance: 22.372 AIC: 129.68 

Comparing between the residual deviance and AIC for the seasonal and non- seasonal time series Exchange rate forecasting, 

we found that it is lower for seasonal data. This indicate that GLM model is better for seasonal time series Exchange rate. 

However, the parameter estimates of Finance, Household and Chemicals sectors are significant for Exchange rate in 

non-seasonal time series case. Both of them contains the significance intercept of the model. Figure 8 displays the first three 

forecasts values for seasonal time series Exchange rate: 

 

Figure 8. Forecasts of 3 seasonal time series data. 

Exchange rate seasonal forecasts 0.29099 0.29038 0.0639 

3.7. ARIMA of Multivariate Time Series Data 

For the time series data, we can use Adjusted Dickey Fuller (ADF) test for all testing the stationarity of these data using 

significance level 5%. The results can be presented in Table 7: 
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Table 7. Case of time series before and after differencing process. 

Time series Before P. value Before After P. value After 

Exchange rate -1.115 0.64 Non-stationary -5.339 0.01 Stationary 

Communications -3.832 0.01 Stationary -8.865 0.01 Stationary 

Finance -3.573 0.011 Stationary -9.509 0.01 Stationary 

R. Estates -3.876 0.01 Stationary -8.783 0.01 Stationary 

Tourism -2.77 0.074 Non-stationary -7.544 0.01 Stationary 

Building -7.051 0.01 Stationary -19.88 0.01 Stationary 

Household -2.814 0.068 Non-stationary -6.31 0.01 Stationary 

Cars -2.627 0.096 Non-stationary -10.75 0.01 Stationary 

Foods -5.497 0.01 Stationary -11.286 0.01 Stationary 

Banks -4.917 0.01 Stationary -10.568 0.01 Stationary 

Health -3.79 0.01 Stationary -10.699 0.01 Stationary 

Basic Resources -2.805 0.069 Non-stationary -7.966 0.01 Stationary 

Chemicals -2.092 0.285 Non-stationary -7.913 0.01 Stationary 

The ADF test indicates that the multivariate time series are non-stationary under significance level 5%. The time series should 

be stationary, so we differenced the whole time series to make it stationary. After differencing the time series, P-values are 

become 0.01, then all time series are become stationary. Figure 9 displays the plots of stationary multivariate time series: 

 

Figure 9. Stationary Multivariate time series plots. 

Using the function "auto.arima()" for stationary time series, we got the models of ARIMA in Table 8: 
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Table 8. ARIMA models. 

ARIMA model Mean Error ARIMA Model Mean Error 

ARIMA(0,0,0) zero mean 155.609 ARIMA(1,0,0) zero 154.464 

ARIMA(0,0,0) non-zero 156.132 ARIMA(1,0,0) non-zero 155.732 

ARIMA(0,0,1) zero mean 154.054 ARIMA(1,0,1) zero 156.293 

ARIMA(0,0,1) non-zero 155.215 ARIMA(1,0,1) non-zero 157.588 

ARIMA(0,0,2) zero 156.228 ARIMA(1,0,2) zero 157.268 

ARIMA(0,0,2) non-zero 157.582 ARIMA(1,0,2) non-zero Inf 

ARIMA(0,0,3) zero 155.793 ARIMA(1,0,3) zero 158.174 

ARIMA(0,0,3) non-zero 156.529 ARIMA(1,0,3) non-zero 159.107 

ARIMA(0,0,4) zero 158.104 ARIMA(1,0,4) zero 160.46 

RIMA(0,0,4) non-zero 159.096 ARIMA(1,0,4) non-zero 161.802 

ARIMA(0,0,5) zero 160.394 ARIMA(2,0,0) zero 155.723 

ARIMA(2,0,1) non-zero 158.732 ARIMA(3,0,1) zero 158.858 

ARIMA(2,0,2) zero 157.990 ARIMA(3,0,1) non-zero 159.734 

ARIMA(2,0,2) non-zero 159.392 ARIMA(3,0,2) zero 160.41 

ARIMA(2,0,3) zero 160.4165 ARIMA(3,0,2) non-zero 161.712 

ARIMA(2,0,3) non-zero 161.642 ARIMA(4,0,0) zero 158.372 

ARIMA(3,0,0) zero 157.416 ARIMA(4,0,0) non-zero 159.669 

ARIMA(3,0,0) non-zero 158.075 ARIMA(4,0,1) zero 160.841 

ARIMA(4,0,1) non-zero 162.183 ARIMA(5,0,0) non-zero 161.993 

ARIMA(5,0,0) zero mean 160.797  

 

From Table 8. The Best model: ARIMA(0,0,1) with zero 

mean, with minimum error 154.054. 

Exchange rate time series with the best model of 

ARIMA(0,0,1) with zero mean, we have the measures in Table 

9: 

Table 9. Measures of the best ARIMA(0,0,1) model. 

Coefficient S.E. Sigma2 Log likelihood AIC AICc BIC 

0.2686 0.1243 1.269 -74.9 153.79 154.05 157.58 

ME RMSE MAE MPE MAPE MASE ACF 

0.1652106 1.1149 0.286 NaN Inf 0.58 -0.006 

All measures of accurate indicate that ARIMA(0,0,1) model 

is the best model, because all measures are achieved the 

lowest values. 

To indicate the importance of stationary process for time 

series let us explain the plots for Exchange rate time series that 

effect of selection of the best model of ARIMA analysis. 

Plot of non-stationary time series Exchange rate 

Autocorrelation and Partial autocorrelation Functions, ACF 

and PACF respectively, to determine the order of models. 

Figure 10 displays the ACF and PACF for Non-stationary time 

series Exchange rate: 

 

Figure 10. Non-stationary time series Exchange rate. 
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Best ARIMA model (0,1,1) with non-zero mean 

Figure 11 displays ACF and PACF measures for Stationary time series Exchange rate 

 

Figure 11. Stationary time series Exchange rate. 

Best Arima Model (0,0,1) with zero mean 

Plots 10,11 of ACF and PACF measures for Exchange rate 

time series are explained that: the forecasting that based on 

stationary time series data, are more smooth and accurate. 

3.8. VARS of Multivariate Time Series Data 

We will use two different functions "VAR()", "vars::VAR()" 

to lag order identification, from two different packages in R 

"vars" and "MTS" respectively. Both functions are quite 

similar to each other but differ in their outputs. To identify the 

lag order for the VAR model, we obtained the estimations and 

its standard errors in Table 10: 

Table 10. Results of VAR model. 

ARIM(0,0,1)(GLM) Estimates Standard Error 

Exchange rate 0.1707 0.1771 

Communications 39.962 176.5 

Finance 79.189 237.76 

R. Estates 111.344 287.75 

Tourism 24.0923 39.801 

ARIM(0,0,1)(GLM) Estimates Standard Error 

Building -258.567 211.616 

Household 26.5127 102.957 

Cars 2.017 71.55004 

Foods -19.47 141.6864 

Banks 29.55 117.0024 

Health 10.84 52.92681 

Basic Resources 46.52 64.82822 

Chemicals 1.655 37.3347 

AIC 150.097  

The "vars::VAR" function is a more powerful and 

convenient to identify the correct lag order, as shown for its 

results in Table 11: 

Table 11. Results of VARS Model. 

ARIM(0,0,1)(GLM) Estimate Std. Error 

Exchange rate 0.4285 0.33950 

Communications 0.00033 0.0002844 

Finance -0.00002 0.0002242 

R. Estates -0.0004 0.0004071 

Tourism -0.0016 0.001531 

Building -0.0001 0.0001591 
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ARIM(0,0,1)(GLM) Estimate Std. Error 

Household -0.0021 0.0006366 

Cars 0.00163 0.0006193 

Foods 0.00011 0.000245 

Banks 0.0009 0.0004958 

Health -0.0009 0.0007809 

Basic resources 0.00206 0.001050 

Chemicals 0.00196 0.001429 

AIC(n) 14.65054  

Comparing between the results of VAR and VARS models, 

we found that the model VARS is more accurate for ARIMA 

(0,0,1) model. This is because the results of AIC and standard 

residuals of estimations for VARS model is lower than VAR 

model. 

Granger Test for Causality: 

For "causality" function to give reliable results, we need all the 

variables of the multivariate time series to be stationary. Cause 

variable here is Exchange rate. If not specified then first column 

of any regressor is used. Notice: Multiple variables can be used. 

H0: Exchange rate is not called a Granger cause of other 

time series. 

H1: Exchange rate is called a Granger cause of other time 

series. 

F-test = 5.4419, P-value = 0.0000000000004 

Exchange rate is called a Granger cause of other time series. 

This means that it is useful in forecasting another time series 

with 5%. 

Instant Test: 

H0: No instantaneous causality between Exchange rate and 

other variables. 

H1: There is instantaneous causality between Exchange rate 

and other variables. 

Chi-squared = 21.702, P-value = 0.041 

So, there is instantaneous causality between Exchange rate 

and other variables with 5%. 

We use a predict() function to forecast (over a short horizon) 

of VAR values, because the prediction (over long horizon) 

becomes unreliable or uniform. Table 12 presents the first 

three forecasting values for VARS: 

Table 12. Forecasting VARS model. 

Time series 1 2 3 

Exchange rate -1.993 -0.999 -0.119 

Communications -392.8023 678.211 -457.121 

Finance 637.586 193.227 -14.832 

R. Estates -806.122 531.746 -205.7712 

Tourism 408.768 4.8002 -2.856 

Building 185.742 190.747 -295.9576 

Household 340.975 971.142 -81.5026 

Cars -295.111 1006.891 -231.859 

Foods -1532.01 1172.727 239.588 

Banks 595.628 561.261 -223.907 

Health 843.266 -482.553 1097.624 

Basic resources 229.308 330.11 -145.795 

Chemicals 524.843 308.633 -347.984 

Figure 12 displays the forecast of all stationary time series: 

 

Figure 12. Forecasting the stationary time series. 
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4. Discussions 

From the previous results, we can summarize these results 

as below: 

(1) We scaled (normalize) all non-time series data to get 

reasonable results since the error achieved a too high value = 

18264160, and the reached threshold =0.0009480014. 

(2) For ANN model of non-time multivariate series data, we 

found that: 

RMSE for Predicted values, using test set, for Dependent 

variables = 2.0279. 

R
2
 for Predicted values, using test set, for Dependent 

variables = 0.896. 

RMSE for Predicted values, using test set, for Exchange 

rate as dependent variable = 0.1685. 

R
2
 for Predicted values, using test set, for Exchange rate as 

dependent variable = 0.987. 

With one hidden layer, the error = 158.984 and reached 

threshold = 0.0096. 

All these values indicate the ANN model accuracy. 

(3) For using the ANN model for forecasting the time series 

Exchange rate, we found: 

The AMs values of seasonal time series Exchange rate, 

reset time series are x-regressors, are lower than the AMs 

values for non-seasonal time series Exchange rate. This 

indicates that the ANN model of seasonal time series is better. 

 (4) For using the GLM model for forecasting the time 

series Exchange rate, we found: 

Comparing between the residual deviance and AIC for the 

seasonal and non- seasonal time series Exchange rate 

forecasting, we found that it is lower for seasonal data. This 

indicate that GLM model is better for seasonal time series 

Exchange rate. However, the parameter estimates of Finance, 

Household and Chemicals sectors are significant for 

Exchange rate in non-seasonal time series case. Both of them 

contains the significance intercept of the model. 

(5) For using the ARIMA model for forecasting the 

multivariate time series data, we found: 

As shown the ADF test indicates that the multivariate time 

series are non-stationary under significance level 5%. The 

time series should be stationary, so we differenced the whole 

time series to make it stationary. After differencing the time 

series, P-values are become 0.01, then all time series are 

become stationary. All measures of accurate indicate that 

ARIMA(0,0,1) model is the best model, because all measures 

are achieved the lowest values. 

Figures 10, 11, that display ACF and PACF measures for 

Exchange rate time series are explained that the forecasting 

that based on stationary time series are more smooth and 

accurate. 

(6) For using the VARS models for forecasting the 

multivariate time series data, we found: 

Comparing between the results of VARS models, we found 

that the model VARS is more accurate for ARIMA (0,0,1) 

model. This is because the results of AIC and standard residuals 

of estimations for VARS model is lower than VAR model. 

Granger Test for Causality: 

Exchange rate is called a Granger cause of other time series. 

This means that it is useful in forecasting another time series 

with 5%. 

Instant Test: 

There is instantaneous causality between Exchange rate and 

other variables with 5%. 

5. Conclusions 

This article discusses the theoretical and numerical aspects 

of different models that forecasting the multivariate time 

series data, whether these data are seasonal or not. These 

methods are ANN, ARIMA, GLM and VARS. All models are 

used to analyze the data that obtained from Egypt Stock 

Exchange for the Exchange rate, and the related transactions 

of twelve sectors. During the period from Jan 2015 to Feb 

2019. We displayed the features of these data graphically, and 

also displayed the periodic features of these data. The ANN 

are to analyze these data in the Non-time series matter using 

the "neural" packages, after scaling these data to be reasonable 

and get good fitting results. We displayed the network of 

fitting process that considered the inputs is Exchange rate, and 

the related sectors' transactions are outputs indicating the 

weights of the net using one hidden layer. The ANN model is 

constructed, and the accuracy values of the model is 

constructed using two accurate measures RMSE and R
2
, and 

we have obtained the high accuracy in the case of considered 

the Exchange rate is input or output variable. Also, ANN is 

used to analyze the time series using "nnet" package using 

Exchange rate as a Xregressor (Exogenous variable). The 

process of forecasting and accuracy are investigated using ME, 

ACF, MAE, MPE, RMSE, MASE, and MAPE measures. This 

is done for Seasonal and non-seasonal time series data, and 

their results are compared. The GLM is used for Exchange 

rate is dependent variable, the model and estimations are 

tested and the predicted values for seasonal and non-seasonal 

time series data are explained numerically and graphically. 

ARIMA models are also used to analyze the multivariate time 

series data. Where we check the stationary of time series using 

ADF test. This test indicated that the most of time series data 

non-stationary. The differencing method, to make the time 

series to be stationary, is used. We retest the differenced 

multivariate time series data and found them are stationary 

(P-value = 0.01). More of ARIMA models are constructed, 

and selected the best model ARIMA(0,0,1) with zero mean, 

and minimum error, for Exchange rate time series, using 

auto.arima () function. The ACF and PACF plots are displayed 

before and after stationary process, for Exchange rate time 

series. The ARIMA(0,0,1) model is tested using the measures 

AIC, BIC, AICc, MASE, ACF, MAPE, RMSE, MAE and ME. 

Finally, The VARS models are used to analysis the 

multivariate time series. The lag order is identified, the 

estimation of parameters are calculated, the standard errors for 

estimators are calculated, the measures of accuracy are 

indicated. Granger test for causality, with causality() function, 
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indicated that Exchange rate is useful in forecasting other time 

series with 5%. Also Instant test indicated that there is 

instantaneous causality between Exchange rate and other 

variables with significance level 5%. The predicted values for 

Exchange rate are forecasted using the predict() function, and 

we explained that graphically. We indicate that the NNAR() 

model for fitting the ANNs for time series models is 

equivalent to an ARIMA() model, but without the restrictions 

on the parameters to ensure stationarity. Also, for seasonal 

data NNAR(p,P,0)[m] model is equivalent to an 

ARIMA(p,0,0)(P,0,0)[m] model but without the restrictions 

on the parameters that ensure stationarity. For these data, we 

conduct that The ANN and GLM models of fitting seasonal 

time series is better than non-seasonal time series. The 

transactions of Finance, Household and Chemicals sectors are 

significant for Exchange rate in non-seasonal time series case. 

The forecasting that based on stationary time series data are 

more smooth and accurate. The VARS model is more accurate 

rather than VAR model for ARIMA (0,0,1). Finally, we used 

the predict() function to forecast of VAR values over a short 

horizon, because the prediction over long horizon becomes 

unreliable or uniform. 
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