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Abstract: The linear time series model refers to the class of models for which fixed correlation parameters can fully explain 

the dependency between two random variables, but many real-life circumstances, such as monthly unemployment results, 

supplies and demands, interest rate, exchange rate, share prices, rainfall, etc., violate the assumption of linearity. For fitting and 

forecasting of nonlinear time series data, the self-exiting threshold autoregressive (SETAR) model was suggested. Using R to 

generate random nonlinear autoregressive data, a Monte Carlo simulation was performed, the SETAR model was fitted to the 

simulated data and Lafia rainfall data, Nasarawa State, Nigeria to determine the best regime orders and/or scheme number to 

make future forecast. Using Mean Square Error (MSE) and Akaike Information Criteria (AIC), the relative performance of 

models was examined. At a specific autoregressive order, regime order, sample size and step ahead, the model with minimum 

criteria was considered as the best. The results show that the best autoregressive and regime orders to be chosen are 3rd and 

2nd [SETAR (3, 2)] respectively for fitting and forecasting nonlinear autoregressive time series data with small and moderate 

sample sizes. As the sample size increases, the output of the four models increases. Finally, it is shown that when sample size 

and number of steps forward are increased, the efficiency and forecasting capacity of the four models improves. 
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1. Introduction 

In many real-life circumstances, time series data arises 

naturally, such as economics, monthly unemployment data, 

supplies and demands, interest rates, exchange rates, share 

prices, rainfall, etc. These variables are known to be 

responsive and affected by many variables, responding 

quickly to any external intervention, resulting in sudden and 

drastic behavioral changes. 

Linear relationships are the first approximation used to 

characterize any relationship, according to Akeyede et al. [1], 

but there is no unique way of describing what a linear 

relationship is in terms of the underlying essence of the 

quantities. The nonlinear model is the model class for which 

the functional form of the dependency between two random 

variables is more general than linear equation and/or can 

change over time. 

Nonlinear time series models have a much broader variety 

of potential dynamics for series, such as economic and 

financial data, rainfall data, etc. Compared to linear models, 

they are able to capture asymmetry, jump, wave, and other 

nonlinear behaviors. The self-exiting autoregressive 

threshold (SETAR) model is suggested, this class of 

nonlinear models are increasingly used in time series analysis 

to describe and forecast different empirical phenomena in an 

observed time series as it is helpful in capturing nonlinear 

dynamics, this could be seen in the works of the time series 

(Tong and Yeung [16], Watier and Richardson [20], 
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Grabowski et al. [9]). 

In relation to the traditional linear modeling approach, the 

essence of these classes of models is examined using 

simulated data and rainfall data for Lafia obtained from the 

Nasarawa State Meteorological Department, Nigeria. The 

statistical characteristics and forecast performance of the 2-

regime SETAR models with long-term storage in the first and 

short-term storage in the second were extensively examined 

in order to locate the threshold parameter using stock indices 

and individual asset prices (Tong [15]; Hansen [10]; 

Clements and Smith [2]; De Gooijer [3]; Dufrenot et al. [5]). 

The SETAR models introduced by Tong [12] that were 

more thoroughly developed in the seminal paper by Tong and 

Lim [13] belong to the class of nonlinear models that have 

been increasingly used in the study and forecasting of time 

series as they are useful for adequately capturing nonlinear 

dynamics (Grabowski et al. [9]). In terms of expansion of 

autoregressive models, they can be considered, allowing for 

changes in the parameters of the model by regime switching 

behavior. The SETAR model in the space of the threshold 

variable is a piecewise linear autoregressive model. There are 

many approaches to SETAR model estimation that differ in 

their ability to estimate the hyper-parameters and to measure 

SETAR models of high order. The methods widely used are; 

the approach of Tsay, which emphasizes graphical analyses to 

define thresholds and, Hansen's methodology covers 2 and 3 

order models in depth, which helps the thresholds to be 

calculated. 

The success of SETAR models is because, compared to 

many other nonlinear time series models, they are relatively 

easy to specify, estimate, and interpret (Tong [17]). In the 

variable's relationship, the common empirical time series 

modeling assumes linearity and stationarity. Applied time 

series analysis, however, finds it difficult to assume this 

linearity in data simply because arguments have been raised 

that nonlinear specification can reflect data generation 

processes more realistically (Franses and van Dijk [7]). In the 

analysis of nonlinear time series results, this research 

therefore determines the best scheme and autoregressive 

orders for SETAR models. 

2. Methodology 

Using the Monte Carlo algorithm, we generate random 

data on nonlinear autoregressive processes from normal 

distribution to test the output of the proposed SETAR model. 

The importance of the choice of the proposed model is 

demonstrated by an empirical application on the Lafia 

rainfall data from Nasarawa, Nigeria. The simulation is the 

realization of a simple two-stage SETAR model produced to 

identify nonlinear phenomena and sample analytical 

processes that have been performed using R statistical 

software for the following sample sizes: 20, 40, 60, 80, 100, 

120, 140, 160, 180 and 200. For all possible parameters, the 

parameters of the SETAR (p, d) order model (p) and the 

regime number (d) have been defined. 

In modeling rainfall results, the empirical application will 

demonstrate the relevance of the choice of process. Mean 

Square Error (MSE) and Akaike Knowledge Criteria (AIC) 

were used to determine the consistency of fit for each model, 

and the results of the study were presented in Tables 1-3 

along with their respective graphs in Figures 1-9. Simulation 

was done with the trigonometric function given as follows 

under the assumption of stationarity from second-order 

nonlinear autoregressive processes; 

Y� = ∅�sin	(Y���) + ∅�cos	(Y���) + e�	              (1) 

The current value of the Y�  series is a nonlinear 

combination of its self’s most recent past values plus an �� 
"innovation" concept that integrates something new in the � 
series that is not explained by the previous values. For each t, 

therefore, we assume that ��  is independent of �� , ����, ����, ⋯(Akeyede et al., 2015). 

2.1. The SETAR Model 

Order p's self-exiting threshold Autoregressive (SETAR) 

model belongs to the autoregressive threshold (TAR) family, 

which is important for nonlinear time series modeling. Such 

models are a relatively simple relaxation of standard 

autoregressive linear models that allow a number of states to 

be approximated linearly. According to Tong [15], by 

decomposing the one-dimensional Euclidean space into k 

regimes with a linear autoregressive model in each regime, 

the threshold principle allows the analysis of the complex 

stochastic system; this method makes the model nonlinear for 

at least two regimes but remains locally linear (Gibson and 

Nur [8]). In this research, the class of SETAR models 

considered are classified as; 

SETAR (2, 2), Y� 	= 	 �∅�� + ∅��Y��� + ∅��Y���+e��, if	Y��� ≤ r∅�� + ∅��Y��� + ∅��Y���+e��, if	Y��� > r                                               (2) 

SETAR (2, 3),	Y� 	= 	� ∅�� + ∅��Y��� + ∅��Y���+e��, if	Y��� ≤  �∅�� + ∅��Y��� + ∅��Y���+e��, if	 � ≤ Y��� ≤  �∅�! + ∅�!Y��� + ∅�!Y���+e�!, if	Y��� >  �                                     (3) 

SETAR (3, 2), Y� 	= 	 �∅�� + ∅��Y��� + ∅��Y���+∅!�Y��! + e�� , if	Y��� ≤ r∅�� + ∅��Y��� + ∅��Y���+∅!�Y��! + e��, if	Y��� > r                               (4) 
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SETAR (3, 3),	Y� 	= 	� ∅�� + ∅��Y��� + ∅��Y���+∅!�Y��! + e�� , if	Y��� ≤  �∅�� + ∅��Y��� + ∅��Y���+∅!�Y��! + e��, if	 � ≤ Y��� ≤  �∅�! + ∅�!Y��� + ∅�!Y���+∅!!Y��! + e�!, if	Y��� >  �                     (5) 

where the superscripts indicate states of the world or 

regimes in the models. It is assumed that a linear 

autoregressive process follows the dynamic behavior of the 

time series variable within each regime, the subscript in the 

models indicates the autoregressive order, r is the threshold 

value, "��#	  is the threshold variable that governs the 

transition between the two regimes with d being the delay 

parameter that is a positive integer ($	 < 	&) and	��(') white 

noise processes that are random variables with zero mean and 

constant variance distributed separately and identically i.e. �'~))$*+0, 	-'�., 	σ'� < ∞. 

The threshold parameters satisfy the constraint −∞	 =	r�	 < r�	 < r� … < r3�� < r3 = ∞ . The mechanism that is 

operating at any moment depends on the measurable past 

history of 4Y�5 itself and, in particular, on the importance of (� − $). In equation (2) to (5), Tong and Lom [13] referred to 

the system as self-exiting threshold autoregressive models. 

The benefit of using SETAR models is their ability to 

generate some widely observed phenomena that are not 

capable of being captured by simple linear models that 

provide irreversibility, hops and limit intervals, such as the 

autoregressive moving average (ARMA) model. 

2.2. Parameters Estimation 

The most commonly used approach for parameter 

estimation under the SETAR model is conditional least 

squares (CLS), according to Gibson and Nur [8]. In this 

method, in order to obtain parameter estimates, the predictive 

number of square errors is minimized. First, let 6(��) < ∞, � = 1,2, ….  and ∅ = +:�, :�, ⋯ :;; =�, =�, ⋯ , =;; -�. . This 

provides the requisite details for the estimation of the 

conditional least squares, and it is possible to estimate for ∅ 

by minimizing the residual number of squares in relation to ∅ 

such that: 

>?(∅) = ∑ A�' − 6B+�'CD'��.E�?'F�                (6) 

Firat [6] defined the necessary parameter estimation steps 

for the SETAR model as follows; 

Step 1 

As a first step, it is assumed that the d and γ, the delay and 

threshold parameter values are known. The observed values 

are divided into small sub-groups based on these 

assumptions, and the AIC data criterion for each sub-group is 

determined at the level of &G() = 1,… , H) and is shown as 

follows; 

IJK(&̂G) = M)NOIJK(HG)P, ) = 1,2              (7) 

The &G  value of each scheme is obtained in this situation, 

using M)NIJK(HG) in exchange for the constant values d and 

γ. 

Step 2 

The d value is kept constant in the second step (it is 

presumed to correspond to a certain value; in other words, it 

is known), and the threshold parameters that minimize the 

value of the AIC data criterion are checked this time. Among 

the other threshold parameters, this is the γ value that 

minimizes the AIC (d, γ) value, which is shown in Tong [14] 

as follows; 

IJK($�, QR) = M)NOIJK($�, Q)P             (8) 

Step 3 

The &G 	:N$	Q values are calculated in the first two steps. 

The value of d will be calculated in the remaining third stage. 

From the d option, the d value that minimizes the NAIC(d) 

value will be found in the k number. The model will be 

calculated by conditioning on the above-mentioned 

parameters after the 3 measures are evaluated using the data 

criterion. 

2.3. Test of Stationarity 

Stationarity in the study of time series data is a critical 

principle. Generally speaking, if there is no systematic 

change in the mean (no trend) and variance, and if periodicity 

is removed, a time series is said to be stationary. In other 

words, the properties of one segment of the data are just like 

those of every other section (Tsay [19]). To highlight these 

important associated statistical characteristics, consider the 

simple p
th

 autoregressive [AR(p)] model to demonstrate these 

relevant statistical properties associated with the 

autoregressive unit root test, 

"� = ∅"��� + �� 	                            (9) 

where ��~*(0, -�) and 	S�: |∅| = 1	VW	S�: |∅| < 1 then the 

test statistic is, 

�∅F� =	 ∅X��YZ(∅X)	                              (10) 

where ∅X	is the least square approximation and the normal 

standard error estimate is [6(∅X) and the measurement is a 

one-sided left tail test. If "�  is stationary (). �. |∅| < 1), it can 

be demonstrated that �∅F�~*(0, 1) . Similarly, Dicky and 

Fuller [4] developed the unit root test in which the null 

hypothesis is ∅ = 0  against the alternative hypothesis of ∅ < 0. A value for the statistics for the test 

\] = ∅XYZ+∅X.                           (11) 

compared to the relevant critical value for the test of Dickey 

and Fuller, this is computed. If the test statistic is lower than 

the critical value, the ∅ = 0 null hypothesis is rejected and 

there is no unit root presented. 

2.4. Test of Nonlinearity 

Before applying possible nonlinear model, we first 

perform linearity test against nonlinearity, this pretesting for 
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nonlinearity is important to help protect against over-fitting 

the data. In this analysis, we therefore consider the 

modification by Tsay [18] of Keenan's One-Degree Test for 

Nonlinearity (Keenan [11]), where the F-Test is modified by 

replacing the aggregated quantity ��� with the disaggregated 

variable ���G , ���'; ), ^ = 1, 2,⋯_	where	M  is specified in 

the test of Keenan. The protocol for the F-test is as follows: 

i) Regress �� 	cN	(1, ����, ⋯ , ���d) and then calculate the 

fitted values (��)  and the residuals (�̂�)	ec 	� = _ +1,⋯N,	hence the regression model is; 

�� = f�∅ + ��                             (12) 

gℎ� �	f� = (1, ����, ⋯ , ���d)	:N$	∅ = (∅�, ∅�, ⋯ ∅d)′. 
ii) Regress vector j� 	cN	(1, ����, ⋯ , ���d)  and calculate 

the residuals (��)	ec 	� = _ + 1,⋯ , N. In this step, the 

multivariate regression model is; 

j� = f�S + ��                            (13) 

gℎ� �	j�  is a dimensional vector defined by j�k =V�lℎ(m�k, m�), with m� = (����, ⋯ , ���d) and V�lℎ  denoting 

the half stacking vector. 

iii) ])�	�̂� = �n�o + p� , � = _ + 1,⋯ , N and then define 

]n = q∑rnstûs+∑rnstrnst.vw∑rnstûsd x y ∑usz{�|�d��}~          (14) 

where the summation is over �	e cM	_ + 1	�c	N	and ]n  is 

asymptotically distributed as ]d,{�|�d�� 

2.5. Forecasting 

Different procedures exist to forecast the linear and 

nonlinear time series models and the SETAR model forecasts 

could be interpreted as enhancing the ARIMA model in order 

to compare these forecasts. Rising values could suggest an 

attempt by the model to capture the variance in the series 

more efficiently and represent overall movements in the 

process. In general, it should be noted that if a model better 

describes the characteristics of time series with an in-sample 

fit, there is no guarantee that it will also make better forecasts 

(Franses and Dijk [7]). Computing point estimates from 

models of nonlinear time series require complicated 

computations. 

Consider �� , a nonlinear autoregressive lag duration one 

model, the forecasting phase begins with a sample of process 

values before � say, ��, ��, … . , �� , our observed data reflects 

these values. Our forecasting model forecasts future process 

values, i.e. ����, ����, ���!, …. Generally speaking, ���� is the 

value of the forecasting process at lead time h ahead of the 

prediction at lead time t where ℎ > 1. 

3. Results and Discussions 

Monte Carlo simulations were performed to investigate 

SETAR (p, d) efficiency, where p, d = 2, 3, i.e., in the fitting 

and forecasting of the simulated nonlinear autoregressive 

model, SETAR (2, 2), SETAR (2, 3), SETAR (3, 2) and 

SETAR (3, 3) models. On the nonlinear simulated results, the 

effect of sample size was examined. Under the SETAR (p, d) 

model, the best order (p) and regime number (d) were 

calculated. The method was also carried out for Nasarawa 

State's 10-year monthly Lafia rainfall data up to 2017. For 

more clarification, the results of the analyses are reported in 

Tables 1-3 and shown graphically in Figures 1-9. 

 

Figure 1. MSE of SETAR (p, d) Model for different Sample Sizes. 

The plots of the MSE and AIC for the SETAR (p, d) model 

for different sample sizes are shown in figures 1 and 2. It can 

be seen from the graphs that SETAR (3, 2) from sample sizes 

20 to 180 is the best model to suit nonlinear results, followed 

by SETAR (2, 2) on the basis of both MSE and AIC criteria. 

However, for sample size 180 and above, SETAR (3, 3) 

outperforms other choices (larger sample sizes). SETAR (2, 

3) for all sample sizes is the worst model observed. 
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Table 1. Results of Relative Performance of SETAR (p,d) Model at Different Sample Sizes. 

Sample Size SETAR (2,2) SETAR (2,3) SETAR (3,2) SETAR (3,3) SETAR (2,2) SETAR (2,3) SETAR (3,2) SETAR (3,3) 

20 0.9529 1.1211 0.9370 1.0884 3.5512 43.7319 4.1406 43.7450 

40 0.9488 1.1114 0.9312 1.0739 3.3015 39.8988 3.8982 39.6670 

60 0.9378 1.0976 0.9174 1.0568 2.5406 35.6485 2.9950 35.5255 

80 0.9273 1.0786 0.9053 1.0318 2.2822 31.3755 2.8977 31.1396 

100 0.9156 1.0560 0.8896 1.0012 2.2761 27.3449 2.7791 26.8995 

120 0.8925 1.0295 0.8610 0.9631 1.4753 23.6345 1.8456 22.8809 

140 0.8589 0.9777 0.8183 0.8948 0.7010 18.8351 0.7177 17.6305 

160 0.8175 0.9045 0.7626 0.8028 -0.6712 14.5057 0.4310 13.1912 

180 0.7241 0.7448 0.6436 0.5955 -0.2483 8.4707 -1.1195 5.1741 

200 0.4700 0.5198 0.2427 0.0676 -2.8632 8.4652 -10.3490 -23.8790 

 

Figure 2. AIC of SETAR (p, d) Model for different Sample Sizes. 

Therefore, 3rd and 2nd autoregressive and scheme orders are the best autoregressive and scheme orders to be chosen for 

fitting nonlinear autoregressive time series data with small, moderate and large sample sizes (up to 180) respectively, while 

those with larger sample sizes (above 180) can be fitted with 3rd autoregressive and scheme orders respectively. The 

performance of the four models also improves with the minimum value of MSE and AIC as the sample size increases. 

 

Figure 3. MSE of Forecast Performances of SETAR (p, d) Model at Sample Size 20. 

3.1. Performances of SETAR (p, d) Models on Nonlinear Autoregressive Data 

Table 2 and the plots shown in Figures 3-8 showed a comparison of the forecast capacity between the four fitted models and 

the simulated nonlinear autoregressive data for samples of sizes 20, 100 and 200. 
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Table 2. Results of Relative Forecast Performance of SETAR (p,d) Model for Different Sample Sizes. 

Sample 

Size 

Steps 

Ahead 

(d) 

SETAR 

MSE AIC 

(2,2) (3,2) (2,3) (3,3) (2,2) (3,2) (2,3) (3,3) 

 
5 0.6476 0.3823 7555.76 4953.737 0.1302 -7.4221 4.1095 285.8044 

 
10 0.0004 0.2805 3039.628 173.484 -794.008 -8.1663 -5.027 147.9873 

 
15 0.0002 0.0028 596.9272 50.6988 -1143.25 -1139.45 -6.4755 47.255 

 
20 1.23E-05 6.59E-23 6.5361 11.0204 -1325.35 -1409.37 -500.499 -61.2087 

20 25 8.64E-14 4.25E-32 0.4206 1.534 -1502.38 -1815.57 -1065.69 -110.462 

 
30 6.41E-33 1.87E-33 0.2092 0.2589 -1883.62 -2280.25 -1085.02 -124.934 

 
35 6.01E-33 1.83E-33 6.81E-05 0.0116 -2011.42 -2.66E+03 -1.13E+03 -7.79E+02 

 
40 2.18E-33 1.58E-33 1.52E-31 0.0005 -2.72E+03 -3.04E+03 -1.55E+03 -1.23E+03 

 
45 3.12E+34 1.39E-33 8.88E-33 6.38E-26 -3.02E+03 -3.07E+03 -1.60E+03 -1.42E+03 

 
50 1.96E-35 1.14E-33 6.77E-35 4.58E-28 -3.15E+03 -3419.26 -2177.55 -2177.55 

 
5 9.25E-01 8.93E-01 3.34E+00 324352.5 -1.08E+01 2.79E+01 4.30E+01 3.03E+01 

 
10 5.14E-08 8.34E-01 1.11E+00 6407.352 -7.81E+02 5.53E+00 2.28E+01 1.97E+01 

 
15 9.88E-34 1.75E-35 7.78E-01 492.2123 -1.15E+03 -1.15E+03 1.41E+01 4.83E+00 

 
20 9.72E-34 1.72E-33 2.89E-01 138.5937 -1.52E+03 -1.55E+03 1.24E-01 -7.37E+02 

100 25 8.27E-34 1.47E-33 3.06E-02 0.9753 -1.52E+03 -1.91E+03 -8.04E+02 -1.15E+03 

 
30 2.20E-34 8.77E-34 3.90E-03 0.8231 -2.30E+03 -2.26E+03 -1.06E+03 -1.39E+03 

 
35 9.07E+35 5.42E-34 3.89E-03 0.755 -2.68E+03 -2.64E+03 -1.14E+03 -1.46E+03 

 
40 8.58E-35 2.03E-34 4.40E-06 0.04858 -3.12E+03 -3.05E+03 -1.37E+03 -1.72E+03 

 
45 8.54E-35 1.09E-34 -1.31E+03 0.0122 -3.60E+03 -3.45E+03 -1.86E+03 -2.10E+03 

 
50 1.63E-35 7.08E-35 -1330.88 0.0003 -3991.13 -3891.98 -2743.7 -2195.3 

 
5 9.36E-01 9.82E-01 1.09E+00 31.866 2.41E+01 1.62E+01 5.00E+01 4.98E+01 

 
10 8.65E-01 9.18E-01 8.74E-01 4.1824 -1.50E+01 -4.08E+01 4.98E+01 3.30E+01 

 
15 3.00E-33 2.09E-33 3.89E-01 1.2028 -1.15E+03 -1.19E+03 -1.13E+03 1.67E+01 

 
20 2.76E-33 1.57E-33 3.05E-01 0.9757 -1.54E+03 -1.52E+03 -1.15E+03 -1.48E+03 

200 25 2.69E-33 7.80E-34 1.97E-02 0.9531 -1.92E+03 -1.91E+03 -1.32E+03 -1.53E+03 

 
30 1.17E-33 6.26E-34 4.90E-03 0.2659 -2.26E+03 -2.31E+03 -1.43E+03 -1.77E+03 

 
35 6.24E-34 5.97E-34 1.10E-03 0.1329 -2.65E+03 -2.70E+03 -1.69E+03 -1.82E+03 

 
40 6.04E-34 2.67E-34 7.00E-04 0.0001 -3.05E+03 -3.08E+03 -1.97E+03 -1.94E+03 

 
45 4.49E-34 2.00E-34 2.00E-04 4.53E-34 -3.42E+03 -3.47E+03 -2.20E+03 -1.97E+03 

 
50 1.86E-34 1.03E-34 1.03E-34 6.19E-34 -3777.24 -3744.38 -2705.33 -2577.36 

 

The results in Table 2 show that SETAR (2,2) performs 

better for sample size 100 while SETAR (3,2) performs better 

for sample sizes 20 and 200 except for d = 50. Figures 3-8 

display the plots of the findings. From the plots, it was 

observed that SETAR (3, 2) and SETAR (2, 2) have the best 

forecast from steps 10 and 50 ahead of SETAR (2, 3) and 

SETAR (3, 3) based on both MSE and AIC. SETAR (2, 3), 

followed by SETAR (3, 2), are the worst prediction models. 

Therefore, the best autoregressive and scheme orders to be 

chosen at any stage of steps ahead (i.e., from 5 to 50 steps 

ahead) and sample sizes of 20, 100 and 200 (small, moderate 

and high) to forecast nonlinear autoregressive time series 

data are 3rd, 2nd and 2nd, 2nd autoregressive and scheme 

orders, respectively. When the steps ahead are increased, the 

forecasting potential of the four models increases. 

 

Figure 4. AIC Forecast Performance of SETAR (p, d) Model at Sample Size 20. 
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Figure 5. MSE Forecast Performance of SETAR (p, d) Model at Sample Size 100. 

 

Figure 6. AIC Forecast Performance of SETAR (p, d) Model at Sample Size 100. 

 

Figure 7. MSE Forecast Performance of SETAR (p, d) Model at Sample Size 200. 
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Figure 8. AIC Forecast Performance of SETAR (p, d) Model at Sample Size 200. 

3.2. Analysis of Rainfall Data 

Before fitting to the nonlinear SETAR models, the Lafia 

rainfall details, Nasarawa, Nigeria was first tested to 

determine whether it is linear or not. In measuring 

nonlinearity using R statistical software, the Tsay F-statistic 

is used. At 12 orders of auto-regression (p = 0.4138), the null 

nonlinearity hypothesis is not dismissed. Thereafter, to 

decide the best model as shown in Table 3, the data was 

adapted to the class of SETAR models being considered. 

The results of the analysis in Table 3 show that SETAR (3, 

2) is the best fit for rainfall data, followed by SETAR (2, 2) 

with the lowest MSE and AIC values of (1320.1870 and 

865.8924) and (1392.4540 and 868.1811). It also shows that, 

with lower standard errors, the parameter estimates of the 

two best models are important. 

Table 3. Results of Fitted mode to Monthly Rainfall Data. 

Model 
  

Standard 
   

SETAR Regime Estimate Error p-Value MSE AIC 

 
1st 2.1707 0.3394 0.0000 

  
(2,2) 

 
-0.3704 0.1012 0.0004 1392.4540 868.8110 

 
2nd 0.0905 0.1617 0.5767 

  

  
-0.7400 0.1281 0.0000 

  

  
20.1879 14.8843 0.1778 

  

 
1st 0.0216 0.2985 0.9423 

  
(3,2) 

 
-0.0329 0.1229 0.7894 1320.1870 865.8924 

  
0.3286 0.0908 0.0005 

  

 
2nd -0.2742 0.1028 0.0008 

  

  
-0.4348 0.1109 0.0002 

  

 
1st -70.7274 66.7048 0.2914 

  

  
-0.2425 0.1030 0.0203 

  
(2,3) 2nd -0.1802 0.2687 0.5039 1780.2160 905.1698 

  
-0.7971 0.1139 0.0000 

  

 
3rd -0.0516 0.2310 0.8237 

  

  
-0.1200 0.2644 0.6507 

  

  
-50.6034 61.7894 0.4146 

  

 
1st -0.1815 0.0961 0.0618 

  

  
-0.3151 0.0797 0.0001 

  

  
-0.1962 0.2536 0.4409 

  
(3,3) 2nd -0.7382 0.1396 0.0000 1477.2370 889.1556 

  
-0.1657 0.3966 0.6770 

  

  
-0.0509 0.2157 0.8139 

  

 
3rd -0.1174 0.2735 0.6687 

  

  
-0.0396 1.8290 0.9828 
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Figure 9. Plot of Forecasting values against time for the best Models for the Lafia rainfall data [SETAR (3,2) and (2,2)]. 

4. Conclusion 

As shown in the study, the results of this research show 

that SETAR (3, 2) and SETAR (2, 2) are the best fitting 

models for both simulated and real-life data for small, 

moderate and large sample sizes. SETAR (3, 2), followed by 

SETAR (2, 2) at various stages ahead, are also the best 

forecast models. Although SETAR (3, 3) or higher can be 

equipped for those with broad sample sizes and higher steps 

ahead. In addition, SETAR (3, 2) is the best fit for the 

monthly rainfall data from Lafia, Nasarawa, Nigeria, 

followed by SETAR (2, 2). 
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