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Abstract: Nonhomogeneous Poisson Processes (NHPP) are commonly used to model count data where the rate of 

occurrence of events in a given time period is dependent on time. Examples exist in the literature where NHPP has been used 

to model real life count data for the purpose of parameter estimation and prediction. The most common methods used to obtain 

the point estimates of the parameters of the NHPP are the method maximum likelihood and the ordinary least squares method. 

The commonly used Wald-type confidence intervals are based on the assumption of asymptotic normality and are inaccurate 

when this assumption is violated This study considers an alternative method based the profile likelihood function to construct 

approximate confidence intervals for the parameters of a nonhomogeneous Poisson process with linear rate λ(t)=α+βt, based 

on the number of counts in measurement subintervals. Such a linear rate function is applicable in situations where piecewise-

linear approximation to a general rate function is adequate. The profile likelihood confidence intervals for the two parameters 

are constructed from the graphs of their respective relative profile likelihood functions, which are obtained numerically from 

the joint relative likelihood function. Simulations were used to compare the profile likelihood and Wald confidence intervals on 

the basis of coverage probability and mean length. The effects of sample size (number of subintervals) on the interval estimates 

of the parameters were also investigated. The results of the simulation study show that the profile likelihood method is superior 

to the Wald method since it yields shorter confide intervals containing plausible values of each of the two parameters. 

Keywords: Relative Likelihood Function, Profile Likelihood Function, Profile Likelihood Confidence Intervals,  

Wald Confidence Intervals 

 

1. Introduction 

Nonhomogeneous Poisson process are often applied in 

modeling counts of events whose rate of occurrence is 

dependent on time. Nonhomogeneous Poisson process has 

been used by Sumiati, I. et al. [2] to predict and count the 

number of earthquakes in Indonesia, [4] to model different 

kinds of accidents number, and by a number of scientists and 

engineers to describe software reliability growth models. The 

rate or intensity function ���� of Nonhomogeneous Poisson 

process is a nonnegative integrable function of time. In this 

project we assume that we have a nonhomogeneous Poisson 

process over the interval �0, �� with intensity function 

���� � 	 
 ��, 0 � � � �                     (1) 

The method of maximum likelihood is the most common 

method to estimate the parameters of nonhomogeneous 

Poisson process of different types of intensity functions and 

has been considered in [1, 3, 5-8, 14, 15]. Another approach 

to estimating the parameters of a nonhomogeneous Poisson 

process is by the method of ordinary least squares (OLS) 

[1-3]. 

Confidence intervals are an important tool in statistical 

inference which quantifies the variability of an estimator of a 

parameter of interest. Thus, in parametric estimation, a 

complete estimation statement is obtained when a point 

estimate is accompanied by a confidence interval. The most 

common method of constructing confidence interval is called 

the Wald procedure, which relies on the asymptotic normality 

of the MLE [14, 15]. However, the Wald-type confidence 

intervals can perform poorly for small to moderate sample 

sizes due to poor estimation of the standard deviation of the 

estimator or if the sampling distribution of the estimator is 

strongly skewed. 
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This paper considers an alternative method known as the 

profile likelihood method to construct confidence intervals 

for the parameters 	 and � of the NHPP with linear intensity 

function (1) based the occurrence of events data. It is 

assumed that the overall time interval �0, �� is divided in 
 

measurement subintervals �������� , 	��� � , 1 ≤ � ≤ 
  and the 

number of occurrences of the event of interest is observed in 

each. 

The profile likelihood intervals use all the information 

encoded in the likelihood function concerning the parameters 

and are likely to be more robust in small samples. The 

researchers in [9] constructed the profile likelihood 

confidence intervals for the parameters of item response 

models and used simulation to demonstrate that they 

consistently perform better than Wald confidence intervals. 

In capture-recapture analysis, it is known that the small 

sample distributions of the parameter estimators are 

markedly skewed and thus deviates from normality. As a 

result, the Wald confidence intervals are frequently not 

viable. Therefore, Evans, M. A. et al. [12] and Gimenez, O. et 

al. [10] proposed the profile likelihood approach to the 

construction of confidence intervals for the size of a closed 

population �
�  from a capture-recapture data. Constrained 

optimization was used by Reich, G. et al. [11] to develop a 

simple and efficient approach to computing profile likelihood 

confidence intervals and compared their approach to other 

particular types of confidence intervals. 

The remainder of this paper is organized as follows: 

Section 2 presents the formulation of the mathematical model 

of the nonhomogeneous Poisson process with linear rate, the 

procedures for constructing profile likelihood and Wald 

confidence intervals are described in Sections 3 and 4, 

respectively, Section 5 details the simulation study that was 

designed to compare the above described procedures of 

constructing confidence intervals, and Section 6 is the 

conclusion. 

2. Mathematical Formulation of the 

Model 

2.1. Nonhomogeneous Poisson Process with Linear Rate 

Let 
��� be the number of events that occur during the 

time interval �0, �] . Consider an integrable function �:	�0,∞� → �0,∞� . A counting process {
���, � ≥ 0}  is 

called a nonhomogeneous process (NHPP) with rate (or 

intensity) ���� if: 

1) 
�0� = 0 

2) For each � > 0, 
���  has a Poisson distribution with 

mean "��� = # ��$�%$&'  

3) For each 0 ≤ �� < �( < ⋯ < �* , 
����, 
��(� −
����,⋯ ,
��*� − 
��*���  are independent random 

variables. 

For a NHPP with intensity ���� , the number of 

occurrences of an event in any interval is a Poisson random 

variable. Thus for each 0 ≤ $ < � , 
��� − 
�$�  is Poisson 

distributed with mean "��� − "�$� = # ��,�%,&- . 

Suppose that we have a NHPP with the rate function ���� = 	 + �� over the interval �0, �] as in (1). The number 

of occurrences of the event of interest is observed in each of 

the 
  subintervals �������� , 	��� � , 1 ≤ � ≤ 
 . Let .�  denote 

the number occurrences of the event in the �&/ subinterval. 

Then .�  are independent Poisson random variables with 

mean 

�� = �� �	 + �0��,                                (2) 

where 

0� = �� − �(1 �� , 1 ≤ � ≤ 
                       (3) 

2.2. The Maxim Likelihood Estimation 

Let 2 = �2�, 2(, ⋯ , 2�� be a realization of the count vector . = �.�, .(, ⋯ , 2��  for the 
  subintervals. Since .�′$  are 

independent, the likelihood function (joint density) is the 

product of the densities of .�′$: 

4�	, �� = ∏ 6789�:9�;9<9!��>�   

= ?�∑ :9A9BC ∏ �:9�;9<9!��>� ,  

and the log-likelihood function is given as 

D�	, �� = DEF4�	, �� = −∑ �� + ∑ 2�DEF�� −��>���>�∑ DEF�2�!���>�   

= 	� − � �G
( + ∑ 2�DEF H�	 + �0�� ��I��>� − ∑ DEF�2�!���>�  (4) 

Differentiating D�	, ��  partially with respect to 	  and � , 

and setting the resulting derivatives to zero yields the 

following two equations: 

∑ <9JKLM9��>� = �                             (5) 

and 

∑ M9<9JKLM9 = �G
(��>�                             (6) 

The maximum likelihood estimates 	N and �O  of 	 and � are 

then obtained by numerically solving equations (5) and (6) 

simultaneously. 

3. Profile Likelihood Confidence 

Intervals 

The principle of profile likelihood method for constructing 

confidence intervals is described as follows: Suppose PQ is the 

MLE of the vector of model parameters P ∈ Θ ⊆ ℜ�and DVPW 

be the log-likelihood function. Let PX  be considered as a 

single parameter of interest and the others as nuisance 

parameters. The profile log-likelihood function of PX, denoted 
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by DYVPXW,	is obtained by holding PX  fixed and maximizing DVPW over the other � − 1 parameters. That is 

DYVPXW = max]^	_`abc DVPW                      (7) 

Consequently, the relative profile log-likelihood function 

of the parameter PX, denoted by dYVPXW, is defined as 

dYVPXW = DYVPXW − DVPQW.                       (8) 

If the number of unknown parameters is small in 

comparison with the number of independent observations, 

then the relative profile log-likelihood function has properties 

similar to those of a one parameter relative log-likelihood 

function and satisfactory results will be obtained [13]. 

Inferences concerning PX  can be made using the relative 

profile log-likelihood function. The 100�1 − e�%  profile 

likelihood confidence interval for PX  is the set of parameter 

values given by {	PX:	dYVPXW ≥ − �(ghG,�( }, where ghG,�( represents 

the �1 − i(1  quantile of the chi-square distribution with 1 

degree of freedom. 

The general profile likelihood technique described above 

can be used to construct confidence intervals for the 

parameters 	 and � of the NHPP with linear rate. In this case 

the parameter space P = �	, �� is two dimensional and on 

the basis of the log-likelihood function in (4) the respective 

relative profile log-likelihood functions dY�	� and dY��� are 

given by 

dY�	� = D �	, �O�	�1 − DV	,j �OW                     (9) 

and 

dY��� = D�	N���, �� − DV	,j �OW                    (10) 

Here �O�	� is the MLE of � with respect to D�	, ��for fixed 	  and similarly, 	N���  is the MLE of 	  with respect to D�	, ��for fixed � . Calculation of the relative profile log-

likelihood functions dY�	�  and dY���  can be done 

numerically and the 100�1 − e�%  profile confidence 

intervals can constructed. 

4. Wald Confidence Intervals 

The Wald method can be applied in construction of 

confidence intervals in multiparameter models where P = �P�, P(, ⋯	, P�� is the vector of unknown the parameters. 

Let PQX  be the MLE of PX , k = 1,2,⋯ , � . Then by the 

asymptotic normality property of MLE, the sampling 

distribution of 
]m^�]^-6V]m^W is approximately standard normal, where 

the standard error $?VPQXW is defined as the square root of the k&/ diagonal entry of the inverse observed Fisher information 

matrix. That’s $?VPQXW = nopVPQW���XX . The 100�1 − e�% 

Wald confidence interval of a single parameter PX is given by PQX ± rhG$?VPQXW. 

The observed Fisher Information matrix pV	N, �OW  for the 

log-likelihood function in (4) is a square matrix of order 2 

containing negative second partial derivatives of the log-

likelihood function D�	, ��: 

pV	N, �OW = s − tGutJG − tGutJtL− tGutJtL − tGutLG
v
�J,L�>VJj,LmW

        (11) 

where 

tGutJG = −∑ <9�JKLM9�G��>�                      (12) 

tGutLG = −∑ M9G<9�JKLM9�G��>�                      (13) 

and 

tGutJtL = −∑ M9<9�JKLM9�G��>�                     (14) 

The observed Fisher information matrix can be inverted to 

obtain a local estimate of the asymptotic variance covariance 

matrix of the MLE V	N, �OW as 

pV	N, �OW�� = wxN��V	N, �OW xN�(V	N, �OWxN(�V	N, �OW xN((V	N, �OWy         (15) 

where xNzXV	N, �OW = opV	N, �OW���zX. 

Consequently, a 100 �1 − i(1% Wald confidence interval 

for 	 can be constructed as 

	N ± {hGnxN��V	N, �OW                            (16) 

Similarly, the 100 �1 − i(1% Wald confidence interval for � can be constructed as 

�O ± {hGnxN((V	N, �OW                           (17) 

5. Simulation Study 

The performances of the two interval estimation methods, 

namely, Wald method and Profile likelihood method, were 

investigated on the basis of data simulated from a NHPP with 

linear rate under different cases determined by the values 

assigned to the four parameters 
, �, 	 and �. An R code was 

developed to generate mutually independent Poisson random 

variables .� with means �� in (1) and to construct the Wald 

and Profile likelihood intervals for the two unknown 

parameters 	  and � . In the first case a set of data 2� , � =1, 2,⋯ .
 was simulated when	
 = 20, � = 300, 	 = 1, � =0.5 and graphs of the relative profile likelihood function and 

the normal approximation were plotted for each of the two 

parameters as shown in figure 1. For both parameters the 

graph of the normal approximation in green dotted line 

offers a good approximation to the respective profile 
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relative likelihood function indicating a good performance 

of the Wald confidence intervals. However, for the 

parameter 	  the slight departure of the graph of normal 

approximation from that of the relative profile likelihood 

function, the Wald confidence intervals will include 

implausible values of the parameter. Next, five cases 

determined by the values of 
 were considered and for each 

value of N 500 datasets were simulated. The Profile 

likelihood and Wald 95% confidence intervals were 

constructed for each dataset and their widths calculated. 

The estimated coverage probability for each of the two 

interval methods was the proportion of the 500 confidence 

intervals which include the true parameter value. These 

estimated coverage probability of the two confidence 

interval types and the summary statistics (minimum, mean, 

maximum, standard deviation) of the widths of the 500 

confidence intervals for each case are reported in table 1. 

The results in table 1 show that for all the cases considered 

the Profile likelihood confidence intervals have smaller 

minimum, mean and maximum interval widths as compared 

to those of Wald confidence interval, but it can be observed 

that as 
 increases the mean interval width for the Profile 

likelihood confidence intervals approaches that of the Wald 

confidence intervals. Also, it was observed that for the five 

values of 
 used the respective numbers of 95% confidence 

intervals for the parameter 	 with negative lower limits out 

of the 500 Wald confidence intervals were 189, 155, 143, 

139 and 142. 

Table 1. Estimated coverage probabilities and summary statistics of widths of the 95% Profile Likelihood and Wald confidence intervals for the parameters 	 

and �on the basis of 500 replications when � � 300, 	 = 1, � = 0.5 for each
 = 20, 50, 100, 200, 500. 

N   Min Mean Max std dev Cp 

20 Profile 	 0.365 1.602 1.891 0.248 0.948 

  � 0.01202 0.01726 0.01808 0.0007 0.940 

 Wald 	 1.557 1.744 1.954 0.059 0.946 

  � 0.01681 0.01742 0.01805 0.0002 0.936 

50 Profile 	 0.505 1.530 1.800 0.203 0.962 

  � 0.01191 0.01675 0.01780 0.0008 0.930 

 Wald 	 1.397 1.623 1.835 0.084 0.954 

  � 0.01589 0.01692 0.01788 0.0003 0.932 

100 Profile 	 0.579 1.489 1.793 0.199 0.952 

  � 0.00928 0.01668 0.01797 0.0008 0.942 

 Wald 	 1.186 1.579 1.857 0.108 0.946 

  � 0.01499 0.01669 0.01792 0.0005 0.958 

200 Profile 	 0.130 1.489 1.800 0. 216 0.942 

  � 0.00687 0.01659 0.01783 0.0008 0.954 

 Wald 	 1.054 1.575 1.868 0.124 0.944 

  � 0.01492 0.01669 0.01792 0.0005 0.958 

500 Profile 	 0.363 1.479 1.793 0.207 0.944 

  � 0.00393 0.01645 0.01776 0.00110 0.953 

 Wald 	 0.960 1.565 1.565 1.826 0.944 

  � 0.01431 0.01666 0.01784 0.0005 0.974 

 

Figure 1. The graphs of Profile relative likelihood function (continuous black line) and the Normal approximation (dotted green line) of the parameters 	 and � when 
 = 200, � = 300, 	 = 1, � = 0.5. 
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Figure 2. Plots of coverage probabilities for Profile likelihood (dark line) and Wald (colored line) 95% confidence intervals for the parameter 	 over the 

values of 
. 

 

Figure 3. Plots of coverage probabilities for Profile likelihood (dark line) and Wald (colored line) 95% confidence intervals for the parameter � over the 

values of 
. 

The values of the estimated coverage probabilities of 

confidence intervals constructed by the two interval 

estimation methods for the parameters 	  and �  are 

reasonably close to the nominal value 0.95 and their 

variations over the values of 
  are shown in figures 2 

and 3. 

Figures 4 and 5 are plots of the widths of the 500 Profile 

likelihood and Wald confidence intervals for the parameters 

	  and � , respectively. In figure 4, interval widths for the 

Profile likelihood confidence intervals for 	  show upward 

spikes which are short and uniform and long variable 

downward spikes, while upward and downward spikes for 

the widths of the corresponding Wald confidence intervals 

are short and uniform. On average the mean interval widths 

for the two method do not differ much but the long 

downward spikes in the first graph indicates that the method 

of Profile likelihood is likely to produce shorter confidence 

intervals than the Wald method. 
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Figure 4. Widths of 95% Profile likelihood and Wald confidence intervals for 	 when 
 � 50, � = 300, 	 = 1, � = 0.5 corresponding to 500 replications. 

 

Figure 5. Widths of 95% Profile likelihood and Wald confidence intervals for � when 
 = 50, � = 300, 	 = 1, � = 0.5 corresponding to 500 replications. 

In figure 5, the spikes for the interval widths for the 

confidence intervals produced by the two method display a 

similar behavior as in figure 4, however, the long downward 

spikes in the first graph are fewer and the degree of 

uniformity is higher indicating increased precision in the two 

interval estimation methods. The values of standard deviation 

in the second last column of table 1 quantifies the precision 

the Profile likelihood and Wald methods in all the cases 

studied and explain the nature of the spikes displayed in 

figures 4 and 5. 

6. Conclusion 

This article considered Profile likelihood method as an 

alternative method for constructing approximate confidence 

intervals for the parameters of NHPP with linear rate. On the 

basis of simulated data the Profile likelihood confidence 

intervals were compared with the large sample Wald 

confidence intervals in terms of interval width and coverage 

probability. The results of the simulation study displayed in 

terms of a table and graphs above show that the Wald 

confidence intervals provide good approximation to the Profile 

likelihood intervals in terms the two efficiency measures used. 

However, in all the cases considered the Profile likelihood 

method produced shorter confidence intervals for both 

parameters as compared to the Wald method, which produced 

some confidence intervals with negative lower limits for the 

non-negative parameter 		 . These Wald confidence intervals 

with negative lower limits were observed to be many for small 

values of 
, where normality approximation is not expected to 

be good. Therefore, it is worth concluding that the profile 

likelihood method is superior to the Wald method since it 

yields confidence intervals containing plausible values of the 

two parameters. Even though these results have been 

demonstrated for the cases considered in this article, other 

cases determined by the values of �, 	 and � could be studied 

to increase the scope of the comparison of these two interval 

estimation methods. 
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