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Abstract: In the present paper, mathematical modeling for analyzing a Markovian queueing system with two heterogeneous 

servers and working vacation has been demonstrated. Keeping in view queueing situations in real life problems, here we 

consider service policy that initially both the heterogeneous servers take vacation when there are no customers waiting for 

service in the queue; however, after this server 1 is always available but the other goes on vacation whenever server 2 is idle. 

The vacationing server however, returns to serve at a low rate as an arrival finds the other server busy. Busy period analysis for 

the working vacation model with heterogeneous servers has been worked out. Performance measures of the Markovian 

queueing system with varying parameters have been explored under steady state using matrix geometric method. Finally, based 

on sensitivity analysis of the performance measures, conclusive observations have been focused.  

Keywords: Markovian queue, working vacation (WV), Bernoulli vacation, heterogeneous servers, algorithmic approach, 
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1. Introduction 

We analyze an M/M/2 Markovian queue with working 

vacations (WVs), in which the server works with variable 

service rates rather than completely stops service during his 

vacation period. Such a vacation is called a working vacation. 

Each server starts a vacation when the system is empty at his 

service completion epoch. If server 1 returns from vacation 

and find server 2 is busy and there is no customers in the 

system then, he stays idle and ready for serving new arrivals. 

If the server 2 returns from a WV to find the non-empty 

system, he immediately switches to original service rate. 

The queueing systems with server vacations or WVs have 

been investigated by many researchers. Past work may be 

divided into two categories: (i) the case of server vacation 

and (ii) the case of working vacation (WV). In the case of 

server vacation, the readers are referred to the survey paper 

by Doshi [4] and monograph of Takagi [26]. The works of 

Dosi [5], Maurya [16] and Takagi [26] focus on a single 

server with vacation model. As for multiple server system 

with vacations Zhang and Tian [28,29] recently contributed 

for plenty analysis of M/M/c with synchronous 

multiple/single vacations of partial servers. In the case of 

working vacation, Servi and Finn [25] first examined an 

M/M/1 queue with multiple WVs where inter-arrival times, 

service times during service period, and vacation times are all 

exponentially distributed. They developed the explicit 

formulae for the mean and variance number of customers in 

the system, and the mean and variance waiting time in the 

system. Later Wu and Takagi [26] extended Servi and Finn’s 

[25] discuss the model M/M/1/WV queue to an M/G/1/WV 

queue. Kim et al. [8] have generalized the research work of 

the model of Servi & Finn [25] to the M/G/1 queue. 

In queueing models vacations can be classified as single 

and multiple server involving single vacation and multiple 

vacations. The server may take a vacation at a random time, 

after serving at most K customers or after all the customers in 

the queue are served. The queueing systems with single or 

multiple vacations have been introduced by Levy and 

Yachiali [12]. The literature about vacation models is 

growing rapidly which includes survey papers by Teghem 

[23], Doshi [4,5] and the monograph by Takagi [26]. We can 
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find general models in Tian and Zhang [24]. In 2007, Li and 

Tian [8] first introduced vacation interruption policy and 

studied an M/M/1 queue. Recently, Ammar [1] has explored 

a new elegant explicit solution for a two heterogeneous 

servers queue with impatient behavior. In Chuen-Horng and 

Jau-chuan [3] considered an M/M/R queue with vacations, in 

which the server works with different service rates rather 

than completely terminates service during his vacation period. 

Li et al. [14] analyzed an M/M/1 retrial queue with WVs, 

vacation interruption, Bernoulli feedback, and N-policy 

simultaneously. Furthermore, research works of Maurya 

[17,18,19,20] focus on bulk arrival single server retrial 

queueing model with second phase optional service and 

Bernoulli vacation. During the WV period, customers can be 

served at a lower rate. Using the matrix-analytic method, we 

get the necessary and sufficient condition for the system to be 

stable. 

The literature shows that the study on multi-server 

queueing systems generally assumes the servers to be 

homogeneous in which the individual service rates are the 

same for all the servers in the system. This assumption may 

be valid only when the service process is mechanically or 

electronically controlled. In a queueing system with human 

servers, the above assumption can hardly realized. However, 

recently Maurya [15,18] considered an interdependent 

M/M/1:(∞;GD) queueing model with bivariate Poisson 

process and controllable arrival rates. It is common to 

observe server rendering service to identical jobs at different 

service rates. This reality leads to modeling such multi-server 

queueing systems with heterogeneous servers that is the 

service time distributions may be different for different 

servers. Levy and Yechiali [11] have discussed the vacation 

policy in a multi-server Markovian queue and they 

considered a model with ‘s’ homogeneous servers and 

exponentially distributed vacation times. Using partial 

generating function technique, the system size has been 

obtained. Kao and Narayanan [7] have discussed the M/M/s 

queue with multiple vacations of the servers using a matrix 

geometric approach. Gray et al. [6] have discussed a single 

counter queueing model involving multiple servers with 

multiple vacations. Tyagi et al. [9] have discussed an M/M/s 

queue with multiple vacation and 1-limited service. Neuts 

and Lucantoni [21] have analyzed the M/M/s queueing 

systems where the servers are subject to random breakdowns 

and repairs. Baba [2] extended work of Servi and Finn [25] 

with M/M/1/WV queue to a GI/M/1/WV queue. They 

assumed not only the general independent arrival but they 

also assumed service times during service period, service 

times during vacation period as well as vacation times 

following exponential distribution. Furthermore, Baba [2] 

derived the steady- state system length distributions at arrival 

and arbitrary epochs. 

Neuts and Takahashi [22] observed that for queueing 

systems with more than two heterogeneous servers analytical 

results are intractable and only algorithmic approach could be 

used to study the steady state behavior of the system. Krishna 

Kumar and Pavai Madheswari [9] analyzed M/M/2 queueing 

system with heterogeneous servers where the servers go on 

vacation in the absence of customers waiting for 

service.Based on this observation, Krishnamoorthy and 

Sreenivasan [10] analyzed an M/M/2 queueing system with 

heterogeneous servers where one server remains idle but the 

other goes on vacation in the absence of waiting customers. 

In this paper we discuss an M/M/2 queueing system with 

heterogeneous servers where both servers go on vacation in 

the absence of customers, for the remaining times server 1 is 

always in the system and server 2 go for vacation whenever it 

is idle. 

2. Quasi Birth and Death Process Model  

Consider an M/M/2 queueing system with two 

heterogeneous servers. Arrivals of customers follow a 

Poisson process with parameter λ . let 
1µ  and 2µ  be the 

service rates of server1 and server2 respectively, where

1 2µ µ≠ . The duration of vacation periods are assumed to be 

independent and identically distributed exponential random 

variables with parameters 
1θ  and 

2θ . During the vacation, if 

an arrival finds server 1 is busy then server 2 returns to serve 

the customer at a lower rate. To be precise server 2 serve this 

customers at the rate 
2θµ , 0 1θ< ≤ . At this vacation gets over 

server 2 instantaneously switches over to the normal service 

rate 
2

µ , upon completion of a service at low rate if no 

customer is waiting for service then go for vacation and if at 

least one customer is waiting for service then server 2 is busy 

with normal service rate. The arriving customers are served 

under the first-come-first-served (FCFS) discipline. The 

vacation queueing model with heterogeneous server under 

consideration can be formulated as a continuous time Markov 

chain (CTMC). The possible states of the system at any 

epoch are represented by ( , )i j  where 0i ≥  denotes the 

number of customers in the system and j=0,1,2,3 denotes the 

status of the servers. The state (0,0) represents there is no 

customers in the system and both servers are on vacation;  

after the state (0,0) server 1 is always available in the system 

the state ( ),1i  represent ( 0i ≥ ) customers are in the system 

and server 1 is busy in the system while server 2 is on 

vacation; the state ( ), 2i represent 0i ≥  customers in the 

system and server 1 is busy and server 2 is in working 

vacation mode; the state ( ),3i represent 0i ≥  customers in 

the system and both servers are busy in the system with 

normal mode.  

Let Q denotes the infinitesimal generator of the continuous 

time Markov chain (CTMC) corresponding to this Q and is in 

the format of a quasi-birth-and –death (QBD) process. Define 

the levels 0,1,2,…, as the set of the states 0={(0,0)},

( ) ( ) ( ){ }1 1,0 , 1,1 , 1,2 ,=  and ( ) ( ) ( ) ( ){ },0 , ,1 , ,2 , ,3i i i i i= if 2i ≥ . 

The state transition diagram of the system is as follows 
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Figure 1. State transition diagram 

Using the lexicographical sequence for the states the 

infinite generator can be written as 

00 01
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The sub-matrices A0, A1 and A2 are of order 4x4 and are 

given by 

0

0 0 0

0 0 0

0 0 0

0 0 0

A

λ
λ

λ
λ

 
 
 =
 
 
 

, 
1

2

1 2

1 2

0 0 0 0

0 0 0

0 0 0

0 0 0

A
µ

µ θµ
µ µ

 
 
 =
 +
 + 

 

1 2 1 2

1 2 2

1

1 2 2 2

1 2

( ) 0

0 ( ) 0

0 0 ( )

0 0 0 ( )

A

λ θ θ θ θ
λ µ θ θ

λ µ θµ θ θ
λ µ µ

− + + 
 − + + =
 − + + +
 

− + + 

 

The boundary matrices are defined by  

00
B λ= − , 01

( ,0,0)B λ= , [ ]10 1 1 20, , ( )
T

B µ µ θµ= +  

1 2 1 2

11 1

1 2

( )

0 ( ) 0

0 0 ( )

B

λ θ θ θ θ
λ µ

λ µ θµ

− + + 
 = − + 
 − + + 

 

12

0 0 0

0 0 0

0 0 0

B

λ
λ

λ

 
 =  
  

,  
1

21
1 2

2 1

0 0 0

0 0

0

0

B
µ
µ θµ
µ µ

 
 
 =
 
 
  

 

Define the matrix 0 1 2
A A A A= + + . Then A is 4x4 matrix 

and it can be written as  

1 2 1 2

2 2

1

( ) 0

0 0

0 0 0

0 0 0 0

A

θ θ θ θ
θ θ

µ

− + 
 − =
 
 
 

 

2.1. Rate Matrix 

To analyze this QBD process, a very important matrix in 

evaluating the performance measures is the matrix R. it is 

known as the rate matrix of the Markov chain Q and it has 

the minimal non-negative solution of the matrix quadratic 

equation  

2

2 1 0
0R A RA A+ + =                      (2.1) 

Since the matrices A0, A1, and A2 are of order 4x4 upper 

triangular, R is also a 4x4 upper triangular matrix. 

Lemma 2.1 

(a) The quadratic equation  
2

1 1 2
( ) 0z zµ λ µ θ λ− + + + =

 
includes the service rate 

1µ  of 

server 1 and the vacation parameter 
2θ  of server 2.  

Therefore, the above quadratic equation has two different 

real roots *

1 1r r<  

and 
1

0 1,r< < *

1
1r >  

where 

( )2

1 1 2 1 2 1

1

1
( ) ( ) 4

2
r λ µ θ λ µ θ λµ

µ
= + + − + + −   

and 

( )* 2

1 1 2 1 2 1

1

1
( ) ( ) 4

2
r λ µ θ λ µ θ λµ

µ
= + + + + + −  

(b) The quadratic equation  
2

1 2 1 2 2( ) ( ) 0z zµ θµ λ µ θµ θ λ+ − + + + + =  includes the 

service rate 
1

µ  of server 1 and the working vacation 

parameter 
2

θµ  of server 2.  

Therefore, the above quadratic equation has two different 

real roots *

2 2r r<  

and 
20 1,r< < *

2 1r >  

where, 

( )2

2 1 2 2 1 2 2 1 2

1 2

1
( ) ( ) 4 ( )

2( )
r λ µ θµ θ λ µ θµ θ λ µ θµ

µ θµ
= + + + − + + + − +

+  

and 

( )* 2

2 1 2 2 1 2 2 1 2

1 2

1
( ) ( ) 4 ( )

2( )
r λ µ θµ θ λ µ θµ θ λ µ θµ

µ θµ
= + + + + + + + − +

+  

(c) The quadratic equation  
2

1 2 1 2( ) ( ) 0z zµ µ λ µ µ λ+ − + + + =   includes the two service 

rates 1µ  and 2µ  of server 1 and server 2 respectively, but it 
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does not include the parameters 1
θ and 2θ . From this it is 

clear that the above quadratic is for the case when both two 

servers are busy in service and it has two different real roots 
1

3 1 2
( )r ρ λ µ µ −= = +  and 

*

3 1r = . 

From the matrix R, we find that the spectral radius 

0,0 1,1 2,2 3,3
( ) max( , , , ) 1sp R r r r r= <  if and only if 1ρ < . Hence, 

we can prove that 1ρ <  is the necessary and sufficient 

condition for that the stability of the process 

{ }( ), ( ), 0L t J t t ≥  is to be positive recurrent (see Neuts and 

Lucantoni [21]). 

Theorem 2.1 

If 1ρ < , the matrix equation (2.1) has the minimal non-

negative solution as follows: 

0 0,1 0,3

1 1,3

2 2,3

0

0 0

0 0

0 0 0

r r r

r r
R

r r

ρ

 
 
 =
 
 
  

 

Where symbols used in the matrix are defined as following: 

0,0

1 2

,r
λ

λ θ θ
=

+ +
1 0,0

0,1 *

1 1,1 0,0

,
( )

r
r

r r

θ
µ

=
−

2 0,0

0,2 *

2 2,2 0,0

,
( )

r
r

r r

θ
θµ

=
−  

1,1 1 2 0,0

2 0,0*

1,1 1 1,1 0,0

0,3

1 2 0,0

1
(1 ) ( )

,
( )(1 )

a a
a

a a a
r

a

θ θ
θ

µ
µ µ

  
+ +   − −   =

+ −

1,1 2

1,3

1 2 1,1

,
( )(1 )

r
r

r

θ
µ µ

=
+ −  

2 2,2

2,3

1 2 2,2

.
( )(1 )

a
r

a

θ
µ µ

=
+ −  

Proof: 

Since the coefficient matrices of equation (1) are all upper 

triangular, so let 

0,0 0,1 0,2 0,3

1,1 1,2 1,3

2,2 2,3

3,3

0

0 0

0 0 0

a a a a

a a a
R

a a

a

 
 
 =  
 
  

                (2.2) 

( )

( )

( )

1 2 3

1 0, ,1 1 2 0, ,2 1 2 0, ,3

0 0 0

2 3
2

1 1,1 1 2 1, ,2 1 2 1, ,32
1 12

3
2

1 2 2,2 1 2 2, ,3

2

2

1 2 3,3

0 ( )

0 ( )

0 0 ( )

0 0 0 ( )

i i i i i i

i i i

i i i i

i i

i i

i

a a a a a a

a a a a a
R A

a a a

a

µ µ θµ µ µ

µ µ θµ µ µ

µ θµ µ µ

µ µ

= = =

= =

=

 + + 
 
 + + =  
 

+ + 
 
 + 

∑ ∑ ∑

∑ ∑

∑

                               (2.3) 

2

1 2 0,0 0,0 1 1 2 0,1 1 2 2 0,2 2 0, 2 1 0,3

0

2

1 2 1,1 1 2 2 1,2 2 1, 2 1 1,31
1

1 2 2 2,2 2 2,2 2 1 2,3

2 1 3,3

( ) ( ) ( ) ( )

0 ( ) ( ) ( )

0 0 ( ) ( )

0 0 0 ( )

i

i

i

i

a a a a a a

a a a aRA

a a a

a

λ θ θ θ λ µ θ λ µ θµ θ θ λ µ µ

λ µ θ λ µ θµ θ θ λ µ µ

λ µ θµ θ θ λ µ µ
λ µ µ

=

=

− + + +− + + − + + + − + +

− + + − + + + − + +=

− + + + − + +
− + +

∑

∑




 
 
 
 
 
 
 

                  (2.4) 

Substituting (3),(4) and A0 into (1) gives the following set  

of equations 

1 2 0,0( ) 0aλ θ θ λ− + + + =                       (2.5) 

2

1 1,1 1 2 1,1
( ) 0a aµ λ µ θ λ− + + + =                  (2.6) 

( ) 2

1 2 2,2 2 1 2 2,2
( ) 0a aµ θµ λ θµ µ θ λ+ − + + + + =       (2.7) 

2

1 2 3,3 1 2 3,3( ) ( ) 0a aµ µ λ µ µ λ+ − + + + =              (2.8) 

1

1 0, ,1 0,0 1 1 2 0,1

0

( ) 0
i i

i

a a a aµ θ λ µ θ
=

+ − + + =∑     (2.9) 

( )
2

1 2 0, ,2 0,0 2 2 1 2 0,2

0

( ) 0i i

i

a a a aµ θµ θ λ θµ µ θ
=

+ + − + + + =∑  (2.10) 

( )
2

1 2 1, ,2 2 1 2 1,2

1

( ) 0i i

i

a a aµ θµ λ θµ µ θ
=

+ − + + + =∑    (2.11) 

3 2

1 2 0, ,3 2 0, 1 2 0,3

0 0

( ) ( ) 0
i i i

i i

a a a aµ µ θ λ µ µ
= =

+ + − + + =∑ ∑   (2.12) 

3 2

1 2 1, ,3 2 1, 1 2 1,3

1 1

( ) ( ) 0i i i

i i

a a a aµ µ θ λ µ µ
= =

+ + − + + =∑ ∑   (2.13) 

3

1 2 2, ,3 2 2,2 1 2 2,3

2

( ) ( ) 0i i

i

a a a aµ µ θ λ µ µ
=

+ + − + + =∑   (2.14) 
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From equation (2.5), we get  

0,0

1 2

,a
λ

λ θ θ
=

+ +                        (2.15) 

Solving equation (2.9), we get 

1 0,0

0,1 *

1 1,1 0,0

,
( )

a
a

a a

θ
µ

=
−                        (2.16) 

Solving equation (2.11), we get 

1,2
0a =                               (2.17) 

Using  (2.17) in equation (2.10), we get 

0,2
0a =                              (2.18) 

Using  equation (2.16)  in equation (2.12), we get 

1,1 1 2 0,0

2 0,0*

1,1 1 1,1 0,0

0,3

1 2 0,0

1
(1 ) ( )

,
( )(1 )

a a
a

a a a
a

a

θ θ
θ

µ
µ µ

  
+ +   − −   =

+ −
     (2.19) 

Making use of equation  (2.17)  in equation (2.13), we get 

2 1,1

1,3

1 2 1,1

,
( )(1 )

a
a

a

θ
µ µ

=
+ −  

Finally, from equation (2.14), we have  

2 2,2

2,3

1 2 2,2

,
( )(1 )

a
a

a

θ
µ µ

=
+ −  

It is clear that the above equations have unique non-

negative solution. Therefore, this non-negative solution must 

be the minimal. 

3. Stationary Distribution 

Let L and J be the stationary random variables for the 

queue length and the status of the servers. Denote the 

stationary probability by 

{ },
ij

x P L i J j= = =  

= { }lim ( ) , ( ) , ( , ) .
t

P L t i J t j i j
→∞

= = ∈ Ω  

Under the stability condition 1ρ < , the stationary 

probability vector x of the generator Q exists. This stationary 

probability vector x is partitioned as 
0 1 2

( , , ,...)x x x x=  where 

0x  is a scalar.  

1 10 11 12
( , , )x x x x= and  0 1 2 3

( , , , )
i i i i i

x x x x x=  for 2i ≥  

Based on the matrix geometric solution method in (see 

Neuts and Lucantoni [21]), the stationary probability vector x 

is given by  

0 00 1 10 0,x B x B+ =                            (3.1) 

0 01 1 11 2 21
0,x B x B x B+ + =                    (3.2) 

( )1 12 2 1 2 0,x B x A RA+ + =                    (3.3) 

2

2
, 3,4,5,...i

i
x x R i−= =                   (3.4) 

and the normalizing equation 

1

0 1 1 2 2
( ) 1x x e x I R e−+ + − =               (3.5) 

Where I is a 4x4 identity matrix, 1e is a 3x1 column vector 

and 2e is a 4x1 column vector with all their elements equal to 

one. 

( ) 0 1 2 01
1 2 1 2 2 0* *

1 0 0 1 1 1 0

1 2
1 2

1 2 1

2
2 2

2

1 2

1
1 1

1 1 ( )

0
1

0 0 1
1

0 0 0 ( )

r rr
r

r r r r r r

r
h

A RA r

r
h

r

θθλ θ θ θ θ θ
µ

θθ

θ

µ µ

        
− + + + + +        − − − −        

 
  −   + = − 

 
  

− +  −  
 − + 

 

Now, it is fairly easy that the equations (3.1),(3.2) and (3.3) 

can be written as the set of equations; 

0 1 11 1 2 12
( ) 0x x xλ µ µ θµ− + + + =              (3.6) 

0 1 2 10
( ) 0x xλ λ θ θ− + + =                  (3.7) 

( )1 10 1 11 1 21 1 22 2 23
0x x x x xθ λ µ µ µ µ− + + + + =   (3.8) 

( )2 10 2 1 12 2 22 1 23
0x x x xθ λ θµ µ θµ µ− + + + + =    (3.9) 

10 1 2 20
( ) 0x xλ λ θ θ− + + =               (3.10) 

0
11 20 1 21*

1 0

1 0
( )

r
x x h x

r r
λ

 
+ + − = − 

       (3.11) 

12 2 20 2 21 2 22
0x x x h xλ θ θ+ + − =          (3.12) 

1 2 2
20 21 2 22 1 2 23

1 2

1 ( ) 0
(1 ) 1

r r
x x x x

r r

θφ θ µ µ
   

+ + + − + =   − −   
 (3.13) 

Where, 

1 2 01
2 0*

0 1 1 1 0

1
1

1 1 ( )

rr
r

r r r r

θ θφ θ
µ

     
= + +     − − −     

 

Solution of equation (3.7) can be easily found as following:  

10 0 0
x r x=  

Solving equation (3.10), we get 

2

20 0 0
x r x=  
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Solving the remaining equations, we have 

1 2 1
11 0

1

( )
x x

λ µ θµ β
µ

 − +=  
 

, 

12 1 0x xβ=  

21 2 0
x xβ=  

22 3 0
x xβ=  

23 4 0x xβ=  

Where,  

4 6 5 1 1
1

6 1 2 3 2 2 1 1( ) ( )( )

h

h h

φ φ φ µβ
λφ µ θµ λφ φ µ
 +=  + − + 

 

4 1 1 2
2

1 1

( )

( )h

φ λβ µ θµβ
µ

 − +=  
 

 

2

1 2 0 2 2
3

2

r

h

λβ θ θ ββ
 + +=  
 

 

2 1 2 2 2
0 2 3

1 2

4

1 2

1
1 1

( )

r r
r

r r

θ θφ β β
β

µ µ

    
+ + +    − −    =

 +
 
  

 

2

1 1 2 2 0 1 0( ) r rφ µ µ θ µ φ = + +   

[ ]2 1 2 1 2( )( )φ µ µ λ µ θµ= − + + +  

2
3 1 2 2 2 1

2

( ) 1
1

r

r
φ µ µ θµ θ µ

  
= + + +  −  

 

2 20
4 1 1 0*

1 0

1
r

r
r r

φ λ θ µ
  

= + +  −  
 

2

5 1 2 2 3 0h rφ φ θ φ = +   

1 2 1 2
6 2 3

11

r h

r

θ µφ θ φ
  

= +  −  
 

2

1 1 2 1 2 1

1
( ) ( ) 4

2
h λ µ θ λ µ θ λµ = + + + + + −

 
 

2

2 1 2 1 2 2 1 2

1
( ) ( ) 4 ( )

2
h λ µ θµ λ µ θµ θ λ µ θµ = + + + + + + − +

 
 

1( )I R −− =

1,3 0,1 0,3 10,1

0 0 1 0 1

1,3

1 1

2,3

2 2

(1 )1
0

1 (1 )(1 ) (1 )(1 )(1 )

1
0 0

1 (1 )(1 )

1
0 0

1 (1 )(1 )

1
0 0 0

1

r r r rr

r r r r r

r

r r

r

r r

ρ

ρ

ρ

ρ

   + −            − − − − − −      
 

    
    − − −    

    
    − − −    
 

  
  −  

 (3.14) 

Substituting (3.14) and I where, I be the unit matrix of 

order 4x4 in (3.5), we get 

1 2 1
0 1 4

1 3,3

0,1 1,3 0,1 0,3 1,1 2

0

0,0 0,0 1,1 0,0 1,1 3,3

1,3 2,3

2

1,1 1,1 3,3 2,2

( ) 1
1

(1 )

(1 )1

(1 ) (1 )(1 ) (1 )(1 )(1 )

1 1

(1 ) (1 )(1 ) (1 ) (1

r
r

r r r r r
y r

r r r r r r

r r

r r r r

λ µ θµ β β β
µ

β

  − ++ + + +     −   

 + − = + + + − − − − − −  

  + + + + − − − −  
3

2,2 3,3)(1 )r r
β

 
 
 
 
 
 
 
     − −    

 

1

0
x y−=  

Let L denote the stationary queue length at an arbitrary 

epoch. Therefore, the mean, second moment and variance of 

the number of customers in the system can be obtained as  

2 1

1 1 2 2 2 2
( ) 2 ( ) 2( )E L x e x e x R I R I R e− − = + + − + −   

2 1 2 3

1 1 2 2 2 2
( ) 4 ( ) ( ) 2( ) 4E L x e x e x I R I R I R I e− − − = + + − + − + − −   

and [ ]22var( ) ( ) ( )L E L E L= −  

4. Busy Period Analysis of the Model 

For the working vacation model with heterogeneous 

servers, the busy period is defined to be the interval between 

the arrival of a customer to an empty system and first epoch 

thereafter when the system becomes empty again. Thus, the 

busy period is the first passage time from state (1,0) to state 

(0,0). For the working vacation model, busy cycle for the 

system is the time interval between two successive departures, 

which leave the system empty. Therefore, the busy cycle is 

the first return time to state (0,0) with at least one visit to any 

other state. 

To discuss busy period analysis, the notion of fundamental 

period (14) should be briefly reviewed. For the QBD process 

described above, starting from a state in level I, where 3i ≥ , 

the first passage time to a state in level i-1 constitutes a 

fundamental period. The cases i=2, i=1, and i=0 

corresponding to the boundary states need to be discussed 

separately. Because of the structure of the QBD process, the 

first passage time distribution is invariant in i. 

Let ' ( , )
jj

G k t denote the conditional probability that a QBD 

process starting in the state (I,j)at time t=0, the first visit to 

level i-1 occurs no later than time t, into the state (i-1,j’) and 

exactly k transitions occur to the left during the first passage 

time.  

The matrix representation of joint transforms of ( , )G z s  
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is defined by 

1 0

( , ) ( , )k st

k

G z s z e dG k t

∞∞
−

=

= ∑ ∫ for 1Z ≤ , Re 0s ≥  (4.1) 

( , )G z s  satisfies the relation 1( , ) ( , )
n

nG z s G z s =  
 for 

1n ≥                                                                                  (4.2) 

 and define   1( , ) ( , )G z s G z s=  

then the matrix ( , )G z s  satisfies the equation 

( ) ( )1 1 2

1 2 1 0( , ) ( , )G z s z sI A A sI A A G z s
− −= − + −   (4.3) 

To discuss the boundary conditions for the vacation model, 

for I = 1,2, let 
'

( , 1) ( , )i i

jj
G k t−  denote the conditional probability 

that a QBD process, starting in the state (I, j) at time 0, 

reaches the level i-1 for the first time nolater than t, after 

exactly k transitions to the left and does so by entering the 

state (i-1, j’). let ( , 1) ( , )i iG z s−  denote the transform matrix 

corresponding to ( , 1) ( , )i iG k t− . Using the similar argument in 

(4.3), we get  

( ) ( )1 1(2,1) (2,1)

1 21 1 0
( , ) ( , ) ( , ),G z s z sI A B sI A A G z s G z s

− −= − + −  (4.4) 

( ) ( )1 1(1,0) (2,1) (1,0)

11 10 11 12
( , ) ( , ) ( , ),G z s z sI B B sI B B G z s G z s

− −= − + −  (4.5) 

(0,0) (1,0)( , ) ,0,0 ( , ),G z s G z s
s

λ
λ

 =  + 
            (4.6) 

Where (0,0) ( , )G z s  is the joint transform of the recurrence 

time to state (0,0) with at least one visit to a state other than 

state (0,0).  Note that (1,0) ( , )G z s  is of 3x1. The Laplace 

Stieltjes transform (LST) for the length of a busy period is 

then given by the first element of (1,0) (1 , )G s+ , that is, the 

element corresponds to the first passage from state (1,0) to 

the state (0,0). The busy cycle comprises an idle period and a 

busy period. The LST for the length of a busy cycle is given 

by (0,0) (1 , )G s+ . 

Let the matrices 

1
0

lim ( , ),
z
s

G G z s
→ −
→ +

= (2,1)

2,1
1
0

lim ( , ),
z
s

G G z s
→ −
→ +

= (1,0)

1,0
1
0

lim ( , ),
z
s

G G z s
→ −
→ +

=
and  

(0,0)

0,0
1
0

lim ( , ).
z
s

G G z s
→ −
→ +

=
                     (4.7) 

The positive recurrence of the process Q implies that G, 

2,1
G , 1,0

G  and 0,0G  are all stochastic and 0,0
(1,1,1)TG = . Let 

1

0 1 2
( ) ,C A A−= − 1

2 1 0
( ) .C A A−= −  in (14) it has been proved that 

G is the minimal non negative solution to the equation 
2

0 2
G C C G= + . 

Taking the 1
0

lim
z
s
→ −
→ +

 on both sides of the equations (4.4), (4.5), 

(4.6) and using (4.7), we get 

1

2,1 1 0 21,
( )G A A G B−= − +                         (4.8) 

1

1,0 11 12 21 10,( )G B B G B−= − +                     (4.9) 

[ ]0,0 101 0 0 .G G=                           (4.10) 

If we found the value of the matrix R then matrix G can be 

computed using the following result (15), 

1

1 2 2
( ) .G A RA A−= − +                       (4.11) 

Let 
1

1, 0

( , )

z s

G z s
M

s = =

∂=
∂

 it has been proved (14) that the 

matrix 
1M  can be computed by successive substitutions in  

( )1

1 1 2 1 1 ,M A G C GM M G−= − + +  

With 0 as the starting value for 
1M . For the boundary 

states, differentiating (4.4), (4.5) and (4.6) with respect to s 

and setting s=0, z=1, we get 

1

2,1 1 0 0 2,1( ) ( ) ,M A A G I A M G−= − + +  

1

1,0 11 12 21 12 21 1,0( ) ( ) ,M B B G I B M G−= − + +  

It is clear that 
1,0M  can be computed recursively starting 

with 
1

M  in decreasing order. Assuming 
0,0

M  as the mean 

recurrence time for state (0,0), a similar operation leads to 

[ ]0,0 1,0 1,0

1
0 0 1 0 0 .M G M

λ
 = +  

 

Where  

(2,1)

2,1

1, 0

( , )

z s

G z s
M

s = =

∂=
∂

 

(1,0)

1,0

1, 0

( , )

z s

G z s
M

s = =

∂=
∂

 

(0,0)

0,0

1, 0

( , )

z s

G z s
M

s = =

∂=
∂

 

Table 1. Performance measures of the Markovian queueing system when 

1 20.7, 3, 1θ θ θ= = =  

λ  

1 2
0.7, 3, 1θ θ θ= = =  

1 2
10, 5µ µ= =  1 28, 8µ µ= =  

[ ]E L  2[ ]E L  Var(L) [ ]E L  2[ ]E L  Var(L) 

2 0.8055 1.7748 1.1260 0.8572 1.9081 1.1733 
4 1.7254 5.7183 2.7414 1.8597 6.3006 2.8422 

6 2.8105 12.7750 4.8762 3.0508 14.5064 5.1993 

8 4.1633 25.3177 7.9847 4.4998 29.4524 9.2040 
10 6.0124 49.9098 13.7611 6.3654 57.1470 16.6291 

12 9.3096 115.8571 29.1889 9.1843 114.6471 30.2961 
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Table 2. Performance measures of the Markovian queueing system with 

variable parameters 

λ  

1 2
0.7, 3, 1θ θ θ= = =  

1 2
0.7, 1, 3θ θ θ= = =  

1 25, 10µ µ= =  
1 210, 5µ µ= =  

[ ]E L  2
[ ]E L  Var(L) [ ]E L  2

[ ]E L  Var(L) 

2 1.0451 2.4825 1.3901 0.8797 1.9192 1.1452 

4 2.3418 9.0528 3.5686 1.6970 5.2289 2.3490 

6 3.8745 22.8721 7.8607 2.4972 10.1618 3.9259 
8 5.7453 49.2668 16.2579 3.4201 17.9936 6.2963 

10 8.2651 98.1197 29.8078 4.7140 33.0041 10.7822 

12 12.5174 206.9532 50.2688 7.2500 77.5638 25.0016 

It is remarked here that the mean length of a busy cycle is 

0,0
M . The first element of the column vector 

1,0
M

 
yields the 

mean length of a busy period, E(B). The mean length of a 

server vacation period, E(v) is 

1 2

1

θ θ+
. The mean length of a 

server busy period is obtained as E(B)-E(V). 

Table 3. Performance measures when 1 20.7, 1, 3θ θ θ= = = and 

1 20.7, 1, 3θ θ θ= = =  

λ  

1 2
0.7, 1, 3θ θ θ= = =  

1 20.7, 1, 3θ θ θ= = =  

1 28, 8µ µ= =  
1 25, 10µ µ= =  

[ ]E L  2
[ ]E L  Var(L) [ ]E L  2

[ ]E L  Var(L) 

2 0.8914 1.9297 1.1350 0.9752 2.1334 1.1824 

4 1.7044 5.1609 2.2559 1.8498 5.6507 2.2290 
6 2.4718 9.7623 3.6524 2.6646 10.6711 3.5712 

8 3.3112 16.6156 5.6518 3.5903 18.6125 5.7220 

10 4.3985 28.3871 9.0399 4.9158 34.1461 9.9812 
12 6.2137 55.7571 17.1471 7.5645 80.8240 23.6019 

Table 4. Performance measures of the system when 
1 20.7, 2, 2θ θ θ= = =  

λ  
1 20.7, 2, 2θ θ θ= = =  

1 210, 5µ µ= =  
1 28, 8µ µ= =  

 [ ]E L  2
[ ]E L  Var(L) [ ]E L  2

[ ]E L  Var(L) 

2 0.8393 1.8341 1.1296 0.8685 1.8947 1.1404 

4 1.6930 5.3562 2.4901 1.7434 5.4858 2.4463 

6 2.5817 10.9024 4.2373 2.6285 10.9963 4.0875 
8 3.6175 19.8615 6.7753 3.6109 19.4918 6.4533 

10 5.0411 36.8464 11.4337 4.8623 34.0356 10.3935 

12 7.7514 85.6532 25.5685 6.8842 66.4325 19.0400 

Table 5. Performance measures of the system when 
1 20.7, 2, 2θ θ θ= = =

 
 

λ  
1 20.7, 2, 2θ θ θ= = =  

1 25, 10µ µ= =  

 [ ]E L  2[ ]E L  Var(L) 

2 0.9908 2.2200 1.2383 

4 1.9797 6.4819 2.5628 

6 2.9588 13.1594 4.4048 

8 4.0781 24.0372 7.4065 

10 5.6392 44.5591 12.7591 

12 8.6188 101.0972 26.8131 

5. Conclusions 

Here, steady state performance analysis of an M/M/2 

Markovian queue with working vacations (WVs) has been 

explored successfully using matrix geometric method. The 

present study of the M/M/2 Markovian queue with working 

vacations (WVs) is an extended model studied by Maurya 

[16]. For different varying parameters, the mean queue length 

and its variance have been obtained in different tables 1-5; 

from which one can easily observe the varying trend of the 

mean queue length and its variance for the M/M/2 Markovian 

queue with working vacations (WVs) model. As far as its 

future scope is concerned, we suggest that the model can be 

further extended for more than two heterogeneous servers as 

well as the arrival pattern may take place in batches. Apart 

from this, the present study can also be extended with other 

concepts such as non-Markovian assumptions etc. 
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