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Abstract: A Marshall–Olkin variant of exponential Pareto distribution is being introduced in this paper. Some of its 

statistical functions and numerical characteristics among others characteristics function, moment generalizing function, central 

moments of real order are derived in the computational series expansion form and various illustrative special cases are 

discussed. This density function is utilized to model a real data set of cancer stem cells patients. The new distribution provides 

a better fit than related distributions. The proposed distribution could find applications for instance in the physical and 

biological sciences, hydrology, medicine, meteorology and engineering. 
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1. Introduction 

Cancer stem cells (CSCs) are a subset of tumor cells that 

possess characteristics associated with normal stem cells. 

Specifically, they have the ability to self-renew, differentiate, 

and generate the diverse cells that comprise the tumor. CSCs 

have been identified and isolated in several human cancer 

types, including breast, brain, colon, head and neck, leukemia, 

liver, ovarian, pancreas, and prostate. These CSCs represent 

approximately 1% of the tumor as a distinct population and 

cause relapse and metastasis by giving rise to new tumors. 

While chemotherapy and other conventional cancer therapies 

may be more effective at killing bulk tumor cells, CSCs may 

manage to escape and seed new tumor growth due to the 

survival of quiescent CSCs. Therefore, traditional therapies 

often cannot completely eradicate tumors or prevent cancer 

recurrence and progression to metastasis. With growing 

evidence supporting the role of CSCs in tumor genesis, tumor 

heterogeneity, resistance to chemotherapeutic and radiation 

therapies, and the metastatic phenotype, the development of 

specific therapies that target CSCs holds promise for 

improving survival and quality of life for cancer patients, 

especially those with metastatic disease. 

Tumors consist of heterogeneous cell populations in which 

only a small fraction, less than 1%, is able to seed new tumors 

by transplantation, functionally defined as cancer stem cells 

(CSCs). There is growing interest in identifying markers and 

therapeutically targeting the CSC population in tumors. Recent 

studies have shown that CSCs have different drug sensitivities 

compared to the bulk population and represent an attractive 

therapeutic target. Studying these cells, however, has been a 

challenge due to their low abundance in vivo and the 

phenotypic plasticity they exhibit during expansion. Using 

current methods, isolated CSCs lose the expression of CSC 

markers and tumor initiating capacity when cultured in vitro or 

in vivo in xenograft animal models. The proportion of CSCs 

tends to an equilibrium level of less than 1% over time, and the 

cell population derived from CSC cultures typically 

recapitulates the heterogeneous nature of the original 

population. Thus, the goal of this contract topic is to meet the 

critical need to develop cell culture systems that can 

specifically grow CSCs for basic and translational research. 

Developments in stem cell engineering and tissue 

engineering have generated new culture systems to accelerate 

the expansion of embryonic, induced pluripotent, and adult 

stem cell populations in vitro. These systems include 

technologies such as three dimensional (3D) culture systems 

containing extracellular matrix components and topological 

features, or bioreactors for large scale culture of cell 

spheroids. Preliminary data suggest that these technologies or 
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similar culture systems may be applicable for quick and 

reproducible expansion of CSCs. Thus, commercial 

development of these culture systems specifically for CSC 

culture may have a significant impact in basic research and 

drug screening applications. 

2. Marshall-Olkin Method 

Marshall and Olkin (1997) [1] introduced a method of 

adding a new parameter to an existing distribution. The 

resulting new distribution, known as the Marshall-Olkin 

extended distribution, includes the original distributions a 

special case and gives more flexibility to model various types 

of data. 

The Marshall-Olkin extended distribution has survival 

function �̅��� = 1 − ���� , which is the baseline survivor 

function. 

Then, the Marshall-Olkin extended distribution has 

survival function 	
��� = 1 − 	���, given By 

	
��� = �	
̅����������
̅���, 
or written in an equivalent form 

	��� = �������� + ��̅���, 
The corresponding PDF takes the form: 

���� = ������
�����
̅�����. 
Finally, central role is playing in the reliability theory by 

the quotient of the probability density function and the 

survival function 

ℎ��� = ����	
��� = �	
�����	
��� , 
called hazard function (or also frequently called failure rate 

function). 

Here we introduce exponential Pareto distribution using the 

method proposed by (Marshall and Olkin, 1997), inputting the 

exponential Pareto distribution. Some statistical properties of 

the novel distribution are established and certain their special 

cases are discussed. The associated density function is utilized 

to model a real data set. The new distribution provides a better 

fit than related distributions as measured by the Anderson–

Darling and Cram´er–von Mises statistics. 

Now, we recall the exponential Pareto distribution by 

(Kareema Abed Al-Kadim Mohammad Abdalhussain Boshi 

et al. (2013) [2]. The so–called exponential Pareto function 

one defines 

	�.���� = � � ���!����"#���
$ , 

Where 	#��� is the Pareto distribution, 	��� = 1 − %��&', 

and � ��� is the exponential distribution, 	��� = (�)� 

So that 

	�.��*; ,, -, .� = � -(�)�!��
�����%��&/�$ , 

Where , is a constant of the Pareto distribution (the lower 

bound of the possible values that Pareto distributed r.v. can 

take on), . is the shape parameter. - is the number of events per unit time (rate parameter) 

Hence the CDF of the exponential Pareto distribution can 

be written in the form: 

	�.��*; ,, -, .� = 1 − (�)%01&/. 

Also the p.d.f of this distribution is given by: 

��.��*; ,, -, .� = 2"3.1�4;�,),'�2� = )'� %��&'�� (�)�01�/. 

This distribution is similar to Weibull distribution that 

given by: 

���, ., 5� = 65�7��(�8�9, 

where . = 5,, = 1,6 = - 

So now we can take the baseline CDF according to 

increase one more parameter to apply Marshall Olkin 

technique as follows: 

���� = 1 − (�)%01&/���                       (1) 

Hence the p.d.f is given by: 

:��� = ;)'� %��&'�� + �< (�)%01&/���.	          (2) 

Applying Marshal-Olkin technique we will get a new 

distribution that called Marshall-Olkin exponential Pareto 

distribution (MOEP) which have the CDF that denoted by: 

	��� = �������� + 5�̅��� 
= ���=>%01&/=?0

�����7��=>%01&/=?0.                           (3) 

According to (2), the related PDF reads 

���� = @1 − �1 − 5�(�)%��&/���A @%-., �'�� + �&(�)%��&/���A − @1 − (�)%��&/���A @-.�1 − 5�, �'�� + ��1 − 5�(�)%��&/���A
@1 − �1 − 5�(�)%��&/���AB . 
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After a few steps we can get the final result as follow: 

���� = 7���>/1 �/=C��=>%01&/=?0
D�����7��=>%01&/=?0E�

	F�$,G����.	        (4) 

Here - >0, 5 >0, α>0, . >0 while FH���  denotes the 

characteristic function of the set A, that is, *H��� = 1 when x 

∈  A, and vanishes elsewhere. Accordingly, the four–

parameter distribution of the r.v X having CDF in the form 

(2) we will signify this correspondence X ∼MOEP (�,	5, -, .). 

3. Moments 

Before concentrating on the deviation of the IJK  raw 

moment of the MOEP ( .) distribution, we introduce the fox-

wright function ΨM�  [ 3], [4], which is a generalization of the 

familiar generalized hyper geometric function FM ,�  with , ∈ 	ℕ$ numerator parameters Q�, …… . , Q� ∈ 	ℂ and T ∈ 	ℕ$ 

denominator parameters U�, …… . , U� ∈ 	ℂ ∖ ℤ$�, defined by 

ΨM� @�Q�, X��, … , �Q�,X���U�, Y��, … , �UM,YM� |[A = \Γ�Q�, X�^�, … , �Q�,X�^�Γ�U�, Y�^�,… , �UM,YM^�_`$ 	[_^!, 
Where the empty products are conventionally taken to be 

equal 1, while Xb > 0, e = 1, ,




; 	Yf > 0, g = 1, T




; 
∆= 1 +\Yb −	\Xb ≥ 0,�

bj�
M

bj�  

We now derive closed form representations of the real 

order moments of a r.v * ∼ MOEP (.). 

l�*m� = � �m	����!�G
$

 

= � �m 	
no
oo
p5�� + -., �'���(�)%��&/���
@1 − �1 − 5�(�)%��&/���AB qr

rr
s !�G

$
. 

It is easy to expand the denominator of the PDF (4) into a 

power series as follows: 

�1 − �1 − 5�(�)%��&/�����B = 1 + 2�1 − 5�(�)%��&/���1! + 2.3�1 − 5�B v(�)%��&/���wB
2! + 2.3.4�1 − 5�y v(�)%��&/���wy

3! + ⋯ 

= \�^ + 1��1 − 5�__j$ v(�)%��&/���w_. 
Or we can write it on another form: 

�1 − �1 − 5�(�)%��&/�����B
= \�2�_�1 − 5�_^!_j$ v(�)%��&/���w_. 

Now, interchanging the integral and sum, we have: 

l�*m� = 5\�2�_�1 − 5�_^!_j$ 	� �mG
$

��
+ -., �'���(�)%��&/��� v(�)%��&/���w_ !� 

= 5�	\�2�_�1 − 5�_^!_`$ � �m(��_���	)%��&/��_���	��!�	G
$

+ 5-., \�2�_�1 − 5�_^!_`$ � �m�'��(��_���	)%��&/��_���	��!�,G
$

 

The IJK  moment is a linear combination of integrals 

ℐ	�|�(considered already for a similar purpose by Nadarajah 

and kotz in [5], [6] where 

ℐ�|� 	= 	� �f��G
$

(��}��~���!�, | = �g, �, Q, �� > 0. 
The following representation of this integral for general 

parameter values was obtained by Pogany and Saxena in [5]:, 

see [6, 7], 

ℐ�|� 	=
��
��
��
���f Ψ$ ;�g, ��

ــــــ
� −Q�� < 	0 < � < 1� Γ	�g��� + Q�f 	� = 1

1�Qf �⁄ Ψ$ D�g� , 1��
ــــــ

� −�Q� �⁄ E 	� > 1�
 

Thus, for all . ∈ �0, 1�, we have 
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l�*m� = 	5�\�2�_�1 − 5�_^!_`$ 	ℐ �I + 1, �^ + 1��, �^ + 1� -�' , .� +	5-., 	\�2�_�1 − 5�_^!_`$ 	ℐ �I + ., �^ + 1��, �^ + 1� -�' , .� 

=	 5�m 	\�2�_�1 − 5�_�^ + 1�m��^!_`$ 	 Ψ$ @�I + 1, .�
ــــــ

� −-��','�^ + 1�'��A� +	 5-.�m�' 	\�2�_�1 − 5�_�^ + 1�m�'^!_`$ 	 Ψ$ @�I + ., .�
ــــــ

� −-��','�^ + 1�'��A� , 
when .=1, we have 

l�*m� = 	5Γ	�r + 1�
�� + -,'�m \

�2�_�1 − 5�_�^ + 1�m��^!_`$ . 
The remaining values of the parameter g > 1 lead to the expected value: 

l�*m� = 	 5�
.	 � -,'�

m��' \�2�_�1 − 5�_
�^ + 1�m��' ^! 	_`$ Ψ$ D�I + 1. , 1.�

ــــــ

� −	�^ + 1����'�	,
-�' E� +	 5�

	� -,'�
m'\�2�_�1 − 5�_�^ + 1�m'��^!	_`$ Ψ$ noo

op�I. + 1, 1.�
ــــــ

� −�	
� -,'�' 	 	�^ + 1�'��qrr

rs� . 
Thus, we get the following result: 

Theorem. Let the r.v. * ∼ ��l�	�g�, g = %�, )�/ , ., 5&, and all parameters > 0 then, for I > −1, we have: 

l�*m� =

��
���
�
���
�� 	 5�m 	\�2�_�1 − 5�_�^ + 1�m��^!_`$ 	 Ψ$ @�I + 1, .�

ــــــ
� −-��','�^ + 1�'��A� +	 5-.�m�' 	\�2�_�1 − 5�_�^ + 1�m�'^!_`$ 	 Ψ$ @�I + ., .�

ــــــ
� −-��','�^ + 1�'��A� 	0 < . < 1

	5Γ�r + 1�
�� + -,'�m \

�2�_�1 − 5�_�^ + 1�m��^!_`$ 	. = 1
5�

.	 � -,'�
m��' \�2�_�1 − 5�_�^ + 1�m��' ^! 	_`$ Ψ$ D�I + 1. , 1.�

ــــــ

�−	�^ + 1����'�	,
-�' E� +	 5�

	� -,'�
m'\�2�_�1 − 5�_�^ + 1�m'��^!	_`$ Ψ$ noo

op�I. + 1, 1.�
ــــــ

� −�	
� -,'�' 	 	�^ + 1�'��qrr

rs� 	. > 1	
 

4. Parameter Estimation 

In this section, we will make use of the MOEP, extended 

Weibull (Ex. W) (Peng and Yan 2014), exponential-Weibull 

(EW) (Cordeiro et al., 2013c), [8-13], two parameter Weibull 

(Weibull) distribution to model two well–known real data 

sets, namely the ’Carbon fibers' (Nichols and Padgett, 2006) 

and the ’Cancer patients’ (Lee and Wang, 2003) data 

sets[14]. The parameters of the MOEP distribution can be 

estimated by the maximum likelihood in conjunction with the 

N Maximize command in the symbolic computational 

package Mathematica. Additionally, two goodness-of-fit 

measures are proposed to compare the density estimates. 

In order to estimate the parameters of the proposed MOEP 

density function as defined in Equation (4), the Log 

Likelihood of the sample is maximized with respect to the 

parameters. Given 

the data xi, i = 1,..., n, the Log Likelihood function is 

��.� = ^	��:5 +\log	�� + -., ��'���_
�j� −\�- ���,�' − ����_

�j� −\log @1 − �1 − 5�(�)%��� &/����AB ,_
���  

���'��7 = _7 −∑ B�=>%0�1 &/=?0�
�����7��=>%0�1 &/=?0�

_�j� = 0,	                                                     (5) 

���'��� = −∑ ��_�j� + ∑ � �
��%>/1 &%0�1 &/�_�j� − ∑ B�=>%0�1 &/=?0�

D�����7��=>%0�1 &/=?0�E
_�j� = 0,	                 (6) 

���'��) = ∑ %/1&%0�1 &/=C
�7�%>/1 &%0�1 &/=C� −∑ %���&' + ∑ B�=>%0�1 &/=?0� .%0�1 &/%0�1 &/

D�����7��=>%0�1 &/=?0�E
_�j� = 0_�j�_�j� ,	                       (7) 
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���'��' = -∑ %���&' ��:���� − ∑ B���7��=>%0�1 &/=?0� .)%0�1 &/ �������
D�����7��=>%0�1 &/=?0�E

_�j� +	∑ %>/1 &%0�1 &/=C ��������%>1&%0�1 &/=C
@7�%>/1 &%0�1 &/=CA = 0._�j�_�j�                   (8) 

Solving these equations simultaneously yields the 

maximum likelihood estimates (MLEs) of the four 

parameters. Numerical iterative techniques are then 

necessary to estimate the model parameters. It is possible to 

determine the global maxima of the log-likelihood by taking 

different initial values for the parameters. However, we 

observed that the MLEs for this model are not very sensitive 

to the initial estimates. For interval estimation on the model 

parameters, we require the Fisher information matrix; 

however in this article we leave this routine calculation to the 

interested reader. 

5. Goodness-of-Fit Statistics 

The Anderson-Darling and the Cram´er-von Mises 

statistics are widely utilized to determine how closely a 

specific distribution whose associated cumulative distribution 

function is denoted by cdf (.000) fits the empirical 

distribution associated with a given data set. 

These statistics are: 

X$∗ = −% ¡¢_� + y¢_ + 1& £^ + �_∑ �2e − 1� log %[b¤1 −_bj�[_�b��¥&¦, 
§$∗ = � 12^ + 1�¨\�[b − 2e − 12^ �B + 112^

_
bj� ©, 

respectively, where [b = 	�ªb�  the ªb 	 values being the 

ordered observations. The smaller these statistics are, the 

better the fit. 

6. Application 

Now, we will make use of the MOEP, two parameter 

gamma (Gamma), two parameter Weibull [23], generalized 

gamma (GG) [13], provost type gamma_Weibull [10],[11], 

extended Weibull (ExtW)[12], distributions to model two 

well–known real data set, namely the ‘Cancer patients’ [14] 

data set. The parameters of the MOEP distribution can be 

estimated from the loglikelihood of the samples in 

conjunction with the N Maximize command in the symbolic 

computational package Mathematica. 

More specifically, the models being considered are: 

� The classical gamma distribution with density 

function: 

���� = � ��(�� «⁄¬ Γ	�­� , � > 0, ¬ > 0, ­ > 0. 

� The classical Weibull distribution with density function: 

���� = g- %�-&f�� (��� )⁄ �® , � > 0, g > 0, - > 0. 
� The generalized gamma (GG) distribution [13-stacy, 

1962] with density function: 

���� = g-� � ��(�)=®�®Γ	�­ g⁄ � , � > 0, ­ > 0, g > 0, - > 0. 
� The Provost type gamma Weibull distribution (Provost 

et al., 2011),[11], with density function: 

���� = g-�f� � �f��(�)=®�®Γ�1 + ­ g⁄ � , � > 0, ­ + g > 0, - > 0. 
� The extended Weibull (ExtW) distribution [Peng and 

Yan, 2014], [12], with density function: 

���� = Q�¯ + U����B�°(�± ��~�²�=³ 0⁄⁄ , 
� > 0, Q > 0, U > 0, ¯ ≥ 0. 

Comp. [15-20]. 

7. The Cancer Stem Cells Patients Data 

Set 

The second data set represents the remission times (in 

months) of a random sample of 128 bladder cancer patients 

as reported in Lee and Wang (2003). The data are 

0.08, 2.09, 3.48, 4.87, 6.94, 8.66, 13.11, 23.63, 0.20, 2.23, 

3.52, 4.98, 6.97, 9.02, 13.29, 0.40, 2.26, 3.57, 5.06, 7.09, 

9.22, 13.80, 25.74, 0.50, 2.46, 3.64, 5.09, 7.26, 9.47, 14.24, 

25.82, 0.51, 2.54, 3.70, 5.17, 7.28, 9.74, 14.76, 26.31, 0.81, 

2.62, 3.82, 5.32, 7.32, 10.06, 14.77, 32.15, 2.64, 3.88, 5.32, 

7.39, 10.34, 14.83, 34.26, 0.90, 2.69, 4.18, 5.34, 7.59, 10.66, 

15.96, 36.66, 1.05, 2.69, 4.23, 5.41, 7.62, 10.75, 16.62, 

43.01, 1.19, 2.75, 4.26, 5.41, 7.63, 17.12, 46.12, 1.26, 2.83, 

4.33, 5.49, 7.66, 11.25, 17.14, 79.05, 1.35, 2.87, 5.62, 7.87, 

11.64, 17.36, 1.40, 3.02, 4.34, 5.71, 7.93, 11.79, 18.10, 1.46, 

4.40, 5.85, 8.26, 11.98, 19.13, 1.76, 3.25, 4.50, 6.25, 8.37, 

12.02, 2.02, 3.31, 4.51. 

If we take the special case of MOEP when p=1, then the 

PDF and CDF estimates of the MOEP distribution for Cancer 

patients data are plotted in Figure (1). 
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Figure 1. The Cancer Patients data fitted using the maximum likelihood approach; Left panel: The MOEP PDF estimates superimposed on the histogram for 

Cancer patients data. Right panel: The MOEP CDF estimates and empirical CDF. 

The estimates of the parameters and the values of the 

Anderson-Darling and Cram´er-von Mises goodness–of–fit 

statistics are given in Table (1). It is seen that the proposed 

MOEP model provides the best fit for the both data sets. 

Table 1. Estimates of the Parameters and Goodness-of-Fit Statistics for the 

Cancer Patients Data. 

Distribution Estimates   ´µ∗  ¶µ
∗  

Gamma (­,¬) 1.17251 7.98766  0.77625 0.13606 

Weibull (g, -) 1.04783 10.6510  0.96345 0.15430 

GG (g, -, ­) 0.52010 0.59510 1.94927 0.30087 0.04626 

��§�g, ­, -� 0.52001 1.42917 0.595104 0.49168 0.084301 

ExtW (a, b, c) 1.96210 1*10�B� 3.74383 13.3317 2.49818 

MOEP (-, 5, g, �) 1.62267 1*10�· 
0.6160 
25.3808 

0.2565 0.0374 

(For different applications see [21-30]. 
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