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Abstract: Novel equi-attractivity in large generalized non-linear partial differential equations were performed for the 

impulsive control of spatiotemporal chaotic. Attractive solutions of these general partial differential equations were 

determined. A proof for existence of a certain kind of impulses for synchronization such that the small error dynamics that is 

equi-attractive in the large is established. A comparative study between these general non-linear partial differential equations 

and the existent reported numerical theoretical models was developed. Several boundary conditions were given to confirm the 

theoretical results of the general non-linear partial differential equations. Moreover, the equations were applied to Kuramoto–

Sivashinsky PDE′s equation; Grey–Scott models, and Lyapunov exponents for stabilization of the large chaotic systems with 

elimination of the dynamic error. 
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1. Introduction 

The ordinary differential equations (ODE′s) theory were 

applied in science and engineering researches [1, 2, 3], for 

mathematical modeling of many physical phenomena. The 

impulsive control on basis of these equations was 

successfully applied for stabilization of the systems with 

chaotic behavior using small control impulses even if the 

chaotic signals and noise are unpredictable. For example, 

autonomous systems of ODE′s Lorenz and Chua oscillator 

systems [4, 5, 6, 7], and non-autonomous systems such as 

Duffings oscillator [8, 9], and where practical stability of the 

system is achieved in a small region of phase space instead of 

controlling the approach of chaotic system to an equilibrium 

position. The impulsive synchronization of two identical 

chaotic systems by ODE′s [10, 11, 12, 13], involved 

autonomous drive system, and response system. Samples of 

the state variables (synchronization impulses) of drive system 

at discrete time intervals were used to: 1) drive the response 

system, 2) impulsively control error between the two 

systems, 3) minimizing the dynamic error, and 4) an upper 

bound on time intervals between impulses is obtained. This 

synchronization was generalized to vary impulse intervals 

[14, 15, 16], where less conservative conditions on Lyapunov 

function are obtained meaning that, it is required to be non-

increasing along a subsequence of switching. The impulsive 

synchronization was applied in secure communications [17, 

18], analysis of impulsive control, and synchronization of 

chaotic systems extending the theory of impulsive 

differential equations to PDE′s [19, 20, 21, 22], giving 

several differential inequalities, asymptotic stability, and first 

order partial differential-functional equations using Lyapunov 

energy functions, and the numerical analysis of first order 

PDE′s [23, 24, 25], The general application of impulsive 

control and impulsive synchronization on spatiotemporal 

chaotic systems generated by continuous extended systems 

including synchronization of spatiotemporal chaotic systems 

generated by coupled non-linear oscillators using ODE′s [26, 

27, 28], and impulsive synchronization of spatiotemporal 

chaotic systems using PDE′s [29, 30, 31], using a finite 

number of local tiny perturbations selected by an adaptive 

technique [32, 33, 34], or using an extended time-delay auto 

synchronization algorithm [35, 36], or synchronizing using a 

finite number of coupling signals in terms of local spatial 

averages [37, 38, 39], frequency and phase synchronization 

of two non-identical PDE′s [40, 41, 42]. Using high 
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dimensional PDE′s involving multiple stable and unstable 

modes, so synchronization process is more difficult 

compared to synchronizing using low dimensional ODE′s. 

Most of coupling schemes for spatiotemporal 

synchronization are very difficult to implement 

experimentally because coupling must be applied at all 

spatial points simultaneously or some variable of driven 

system must be reset to new values at specific points in space 

[43, 44, 45, 46], However, these problems can be solved in 

impulsive synchronization in which much smaller subset of 

points are driven impulsively. The complex behavior of 

spatiotemporal synchronization, and long time consumed to 

solve PDE′s numerically slow down synchronization process 

generate problems in implementation. This character of 

PDE′s represent advantages in masking information for 

secure communication (e.g., many more frequencies are 

involved in mask on using PDE) and security of information 

transmission increased [47, 48, 49], and multichannel spread-

spectrum communication become efficient since a large 

number of informative signals can be transmitted  

and received simultaneously. The implementation of 

impulsive synchronization of spatiotemporal chaos in secure 

communication is under investigation, and no theoretical 

analysis of impulsive spatiotemporal synchronization found 

to determine conditions of impulses to achieve desired 

property of synchronization, and the analysis of Lyapunov 

exponents of these models has not been explored. 
 

The equi-attractivity property [50, 51], was used to 

investigate applying impulsive spatiotemporal 

synchronization between two continuous-time extended 

systems of PDE′s, and set up conditions of systems 

parameters with impulse durations and magnitudes. This 

theoretical mathematical development explained how and 

why impulsive synchronization of spatiotemporal chaotic 

systems works, compared with known numerical results 

about synchronization [52, 53, 54]. These theoretical results 

were confirmed by analyzing Lyapunov exponents of 

dynamic errors generated from impulsive synchronization of 

spatiotemporal chaotic systems [55, 56]. Generalize this 

technique to PDE′s by incorporating numerical method of 

lines [57, 58], and generate a numerical results representing a 

sufficient condition for impulsive synchronization which are 

consistent with theoretically analysis obtained from the same 

systems. 

The aim of this work is to generalize impulsive control of 

spatiotemporal chaos with sufficient conditions for: non-

linear Kuramoto–Sivashinsky PDE′s; and two identical one-

dimensional Grey–Scott models for a diffusion reaction 

system using Lyapunov exponents to achieve equi-

attractivity, stability of large chaotic systems with 

maintaining the chao approaching zero. The theoretical 

development of the theory, and remarks are concluded.  

2. Preliminaries 

Consider the impulsive initial boundary value problem 

presented by one-spatial dimension) n
th

 order partial 

derivative equations given by: 

��
�� = �	 ��, 
, �, ��

�� , �
�
��
 , … , ���

���	� 	� ≠ ��	 , 
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for all  


 ∈  ., !", �	(���, 
) 	= 

	lim�→�+3 �(�, 
), for a fixed 
 ∈  0, !", and the moment of 

impulse satisfying: 0 = t1 < t2 < …… < tk <… and lim		�→4	�� =
∞,  

The matrices Qk are m x m constant matrices satisfying: 

||��|| = 78)9�(��*��	) < !$, For every k = 1, 2, … and 

some L1 > 0  

(8)9� 	(�*�) is the largest eigenvalue of �*�). Let 

f: R+ x [0, L] x R
m
 x….. → R

m
 be continuous on (tk, tk+1] x 

[0, L] x R
m

 

x…→ R
m
, and f(t=�, 
, u, ?@

?A , ?
@
?A
 , … , ?B@

?AB) exists for every k 

= 1, 2, 3,…, 

Let n= 2 in the above model, and assume that f satisfies 
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Lipschitz conditions with respect to: u, 	?@
�� , CDE	 �
@

��
 . 

Furthermore assume the existence of the functions f1 (t, u), 

and f2 (t, u) such that  

f1 (t, u) ≤ f (t, x, u, 0, 0) ≤ f2 (t, u) 

for every (t, 
 , u) 
 ∈  0, F"	
	 0, !"	
	�)  where inequality 

holds compo-nentwise, and T is a positive number, and that 

there exist solutions: G(�), and H(�) to the following systems: 

GI(�) = �$	(�, G), � ≠ 0, ��	, F, 1	 ≤ �	 ≤ K$ 

�G(�+) =	��G(��), 1	 ≤ �	 ≤ K$ 

G(L�) = 	 G� 

and 

HI 	(�) = �&	(�, H), � ≠ 0, ��	, F, 1	 ≤ �	 ≤ K$ 

�H	(�+) = �� 	H(��), 1	 ≤ �	 ≤ K$ 

H(L�) = 	H� 

respectively, where	�)( ≤ F. If H� ≤ ��(
) ≤ G�	 
on [0, L] and if there exists a function:	 

M ∈ NO(0, F)	x	Q0, !R, ��S	such that, for i = 1, …, D$ 

M(�, 
)H	(�) ≤ ℎT(�) ≤ M(�, 
)G(�), 

� ≠ 	��	, � = 1, 2, 3, … … ,K$,  then there exists a local 

solutions�(�, 
): for system (1) satisfying 

	H	(�) ≤ �(�, 
) ≤ G(�) 

provided that the original partial differential equation, in (1), 

without the impulses, has a solution [59]. For 
 ∈  ., !" , 

let	�(�, 
) = �(�, 
, ��(
)) be any solution of (1) satisfying: �(L�, 
) = 	��(
), and u(t, x) be left continuous  

at each tk > 0, k = 1,2,..., in its interval of existence i.e.  �(��-, 
) = �(��, 
) For every 
 ∈  0, !" 
Definition 1. Suppose that:	u(t, x):	R�	x	 0, L" → �) 

for some	K > 0, where u is of class ℓ2 0, L"	with respect to 
.  Then 			⃦.		⃦&	.�	�(�, 
) is defined by 		⃦�(�, 
)		⃦& =
\] 		⃦�(�, 
)		⃦	&^

_ E
`
(


 

where 	⃦.		 ⃦is Euclidean norm. For studying the dynamics of a 

particular systems whose structures resemble system (1), [60]  

The following classes of functions, and definitions were 

discussed:  

Let: 

ab(c) = 	 Q� ∈ �)	:			⃦�		&⃦ ≥ c	R 
ab(c)_ =	 Qe ∈ �):			⃦�		&⃦ > c	R 

f�(c) = 	 Q	g: R�	x	ab(c) → R�: g(�, �)
∈ 	N	O(��, ���$"x	ab(c)S,	 

locally Lipschitz in u, and V (tk
+
, u) exists for k = 1, 2, …3}, 

where  

M ≥ 0. 

Definition 2: Let M ≥ 0, V∈ f�(c), define the upper right 

derivative of V(t, u) with respect to the continuous portion of 

the system (1), for: (t, u) ∈ R�	x	ab(c)�, CDE	� ≠ 	��	, � =1, 2, 3, … , hi  

j��g(�, �) = limk→_3	a�l 1
m 	 	g(� + m, � + 

	m� o�, 
, �, %�
%
 , %&�

%
& , … , %'�
%
'p) − V(t, u)". 

Definition 3: Solutions of the impulsive system (1) are said 

to be 

(S1) equi-attractive in the large if for each r	 > 0, s >0, �� ∈ ��,  
there exists a number T = T ( ��, r, s) > 0  such that 		⃦�(��	, 
)		⃦& < s 

implies 		⃦�(��, 
)		⃦& < r, for t ≥ to+	F;	 
(S2) uniformly equi-attractive in large if T in (S1) is 

independent of �_. 

From the definition of equi-attractivity in the large, it can 

been seen that the solutions of system (1) possessthis 

property will approach zero with respect to 		⃦.		⃦&, no matter 

how large 		⃦�(��, 
)		⃦& is. 

i.e. lim�→4 		⃦�(�, 
)		⃦& = 0. Moreover, the properties (S1), and 

(S2) in Definition 3 become identical for autonomous system 

[61], i.e. 

when: 

� ��, 
, �, ��
�� , �
�

��
 , … , ���
���	� = 	� �
, �, ��

�� , �
�
��
 , … , ���

���	�. 

Therefore when dealing with the autonomous systems, the 

uniform terminology will be automatically removed. The 

above definitions will be used heavily in exploring the 

conditions under which the solutions generated by several 

impulsive PDE′s are equi-attractive in the large. The 

following sections represented the generalization of 

impulsive control of Kuramoto–Sivashinsky PDE′s equation 

and Grey–Scott models for a diffusion reaction system; using 

Lyapunov exponents to study chaotic large systems, and 

maintaining the chaos nearly zero.  

3. Impulsive Control of  

Kuramoto-Sivashinsky PDE′s 

Equation 

These equations are represented by the impulsive initial 

boundary conditions: 

�� 	+ �&
	 + C	(
)��� 	+ 	�����	 = 0, � ≠ ��	 � ∈ ��, � =1, 2, 3	 …                           (2) 

C	(
) ≥ 	m > 0, 0 < 
	 < ! 

∆�(�, 
) = 	−v��(�, 
)	� = ��	 � ∈ ��, � = 1, 2, 3	 … 

�(0, 
) = 	�_(
), 
 ∈  0, !" 
�(�, 0) = �(�, !) = 0, � ∈ �� 
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��(�, 0) = ��	(�, !) = 0, � ∈ �� 

Where v� > 0, � = 1, 2, 3, . .. , and L is the only free 

parameter. Equation (2) with absence of the impulses 

exhibited extensive chaos, indicating that Lyapunov 

dimension of the attractor grows linearly with the system 

volume size (L) [62]. The following Lemma gives the upper 

bounds on: 			⃦�(�, 
)		&⃦ , and 		⃦��(�, 
)		⃦&  in terms of 		⃦���(�, 
)		⃦&.  This Lemma is the well-known Poincare 

inequality [6, 33] lemmas. 

Lemma 1: Let J = [0, L] and c ∈ N&(w). If u(0) = u(L) = 0, 

then  

		⃦�(	
)		&⃦	 ≤	 ^	
x 	 		⃦��(	
)		&⃦	                  (3) 

The next theorem gives the required criteria for system (2) 

to be equi-attractive in large., and achieved controlling 

chaotic behavior of Kuramoto-Sivashinsky by forcing the 

solution to converge to zero. 

Theorem 1: Let q = minkqk, and ∆k+1 = tk+1 - tk ≤ ∆, for k = 

1, 2, 3,…, and for some ∆ >  0. Then the impulsive 

Kuramoto-Sivashinsky equation (2) is equi-attractive in large 

if: 

(1-q)
2
 y∆z< 1, where m > 	x
	

^
  

This theorem will be proved by choosing an appropriate 

Lyapunov function g(�(�, 
)). 

Let: g(�(�, 
)) = 	⃦�(�, 
)		⃦ && 	= 	 ] 	�(�, 
)&	E
	^
_  

Using system (2) with its boundary conditions, definition 

2, and applying integration by parts gave:	� ∈ (��, ���$",	k = 

1, 2, 3, …, 

j��g(�(�, 
)) = { 2�	(�, 
)	��(�, 
)E
^
_

 

= { (−	4�(�, 
)&		��(	�, 
) − 2�(�, 
)C(
)���(�, 
)^
_

 

−2�(�, 
)�����(�, 
))E
 

= −	 43	 �(�, 
)}	" !0 	− 2{ �(�, 
)C(
)���(�, 
)E
	^
_

 

−2{ �(�, 
)�����(�, 
)E
	^
_

 

= −	 43	  �(�, 
)}	" !0 − 2( 	�(�, 
)C(
)�(�, 
)" !0 

− { (�(�, 
)C�(
) +	��	(�, 
)C(
))	��(�, 
)E
)^
_

 

−2 �(�, 
)����(�, 
)" !0 + 2 �(�, 
)���(�, 
)	" !0
− 2{ ���(�, 
)&	E
	^

_
 

= 2] (�(�, 
)C�(
)�(�, 
)� 	E
	^
_         (4) 

+2{ ��(�, 
)&	C�(
)E
 − 2{ ���(�, 
)&	E
^
_

	^
_

 

=2 	C(
)�(�, 
)	��	(�, 
)	" _̂ − 

{ (�(�, 
)���(�, 
) + ��(�, 
)&)C�(
)E
	^
_

 

+2{ ��(�, 
)&	C�(
)E
 − 2{ ���(�, 
)&	E
^
_

	^
_

 

= −2] (�(�, 
)	���	(�, 
) + ��(�, 
)&	C�(
))E
 +^
_	 2 ] ��(�, 
)&	C�(
)E
 −^
_ 	2 ] ���(�, 
)&	E
^

_  

≤	−2m	 ] (�(�, 
)	���		(�, 
)E
 + ] ��(�, 
)&^
_ E
 +^

_2m ] ��(�, 
)&^
_ E
 − 2] ���(�, 
)&	E
^

_ 	 
≤ −2m	 	�(�, 
)	��	(�, 
)	" !0 − { ��(�, 
)&^

_
E
 

+{ ��(�, 
)&E
 +	^
_

	2m { ��(�, 
)&^
_

E
 − 2{ ���(�, 
)&	E
^
_

 

≤	−2m		⃦�(�, 
)		⃦ 22 − 		⃦���(�, 
)		⃦ 22 

However Lemma 1 gave rise to:  

			⃦���(�, 
)		⃦ 22 ≤ 	~&	
!& 		⃦��(�, 
)		⃦ 22		 

Since ��(�, 
)	 satisfies the conditions of Lemma 1, the 

following condition be obtained: 

		⃦��(�, 
)		⃦ 22 	≤ 	 !&	
~& 		⃦���(�, 
)		⃦ 22	 

Thus: 

j��gO�(�, 
)S ≤ 	2m ~&
!& 		⃦�(�, 
)		⃦ 22 − 2~�

!� 		⃦�(�, 
)		⃦ 22	 

≤ 	2m	 ~&
!& − 	2 ~�

!� 		⃦�(�, 
)		⃦ 22 	≤ 	�		⃦�(�, 
)		⃦ 22 

Hence, for all � ∈ (��, ���$",	k = 1, 2, 3, …, then we have: 

gO�(�, 
	)S ≤ 	 y�(�-�+)gO�(	���, 
	)S,           (5) 

And (5) 

gO�(	���$, 
	)S ≤ 	 y�∆+3(gO�(	���, 
	)S          (6) 

Moreover according to the structure of the impulses in 

system (2) 

�.�	C��	
 ∈ 	  0, !	", � = 1, 2, 3, …, 
�(���, 
	) = �	(��, 
) − v��(	��	, 
	) = 	 (1 − v�)�(	��	, 
) ⇒ 
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{ �(���, 
)&	E
	 = { (1 − v�)&	�	(��	, 
)&	E
	^
_

	^
_

 

It follows that:  

g(�(���, 
)) = (	1 − v�)&	g(�	(��, 
))           (7) 

Hence, by using inequalities (6), (7) we have for every,	k = 

1, 2, 3,…,  

gO�(���$, 
)S ≤ (	1 − v�)&y�∆+3(gO�(	�� , 
)S 

≤ (	1 −	v�)&y��gO�(	��, 
)S 

By inequalities (4), and (8). It can be concluded that 

lim�→4 V	Ou(	��, 
)S = 0  Therefore by inequality (5), we 

have for all: � ∈ 	  ��, ���$",	k = 1, 2, 3,…, 

gO�(	�, 
)S ≤ 	 y�∆+3(g	O�(	���, 
)S 	≤ 	 (	1 − v�)&	y�∆+3( 	 
gO�(	�� , 
)S ≤ (	1 − v)&y��gO�(	�� , 
)S→ 0 as k → ∞ It 

follows that: 

	 lim�→4 gO�(	t, 
)S = 0 

i.e. the solutions to impulsive Kuramoto-Sivashinsky 

equation, defined by system (2) are equi-attractive in the 

large. Remark 1. Form theorem 1, chaotic behavior of 

Kuramoto-Sivashinsky equations described by PDE′S in (2) 

reach stability state, and equi-attractivity property was 

achieved by using partial derivatives of PDE′S, and 

Lyapunov functions. 

Remark 2. it was concluded from theorem 1, that if ratio 

chosen to be more accurate than Kuramoto-Sivashinsky 

equation, solutions will continue to be equi-attractive in a 

large, even with lack of impulses. However, impulses are 

required for stabilization the system, provided that impulses 
meeting the requirement set described in theorem 1. 

Remark 3. A sufficient condition in theorem 1. It is not 

necessary. In other words. PDE's impulsive, described by 

system (2) remain equi- attractive in large even the case of 

inequality (4) not satisfied. 

4. Impulsive Synchronization of the 

Grey-Scott Model 

The impulsive control methods have been successfully 

used for controlling chaotic behavior of Kuramoto-

Sivashinsky equation by making its solutions equi-attractive 

in the large, although the original PDE exhibited 

spatiotemporal chaotic behavior. The authors extended this 

work and investigated the impulsive synchronization of two 

identical spatiotemporal chaotic systems using Grey-Scott 

model used as the spatiotemporal generator [63]. The novel 

generalized theory is definitely applicable to synchronization 

of two Kuramoto-Sivashinsky equations, and any other 

spatiotemporal chaotic system of the same structure. Grey-

Scott cubic auto-catalysis model is a reaction diffusion 

system corresponding to two irreversible steps exhibited 

mixed mode spatiotemporal chaos, and is described by the 

equations: 

��(
�� = −�$	�&& + C(1 − �$) + E$C(
)∇&	�          (8) 

��

�� = �$�&& − (C + h)�& + E&∇&	�&            (9) 

Where b is the dimensionless rate constant of the second 

reaction, a is the dimensionless feed rate, and d1, d2 are the 

diffusion coefficients. In the following section, the impulsive 

synchronization of the one-dimensional version of this 

system with another identical system starting from different 

initial conditions is discussed. i.e. synchronization of the 

chaotic signal 	�(�, 
) = (�$(�, 
), �&(�, 
))* , is given by 

transmitter: 

��(
�� = −�$�&& + C(1 − �$) + E$C(
) �
�(

��
  � ∈ �� 

��

�� = �$�&& − (C + h)�& + E& �
�


��
  � ∈ ��	      (10) 

C	(
) 	≥ 	m	 > 0, 0 < 
	 < 1 

�(0, 
) = ��(
), 
 ∈  0, !" 
�(�, 0) = �(�, !) 	= ℎ(�), � ∈ �� 

With the chaotic signal: �(�, 
) = (�$(�, 
), �&(�, 
)* 

given by: 

%�$%� = −�$�&& + C(1 − �$) + E$C(
) %&�$%
&  

� ≠ ��	, k =1, 2, …. 

��

�� = �$�&& − (C + h)�& + E& �
�


��
                  (11) 

C	(
) 	≥ 	m > 0, 0 < 
	 < 1 

�(0, 
) = ��(
), 
 ∈  0, !" 

�(�, 0) = �(�, !) 	= ℎ�(�), � ∈ �� 

∆�(�, 
) = 	−��y(�, 
), � = ��	, 

 ∈  0, !", k	 = 1, 2, …. 

Where a, b, E$,  and E&,  are defined previously: ��(
), ��(
)	 are the initial conditions, ℎ(�) is the periodic 

boundary condition for the transmitter system, y(�, 
) =�(�, 
) − �(�, 
). �� 	  	 are constant matrices satisfying  ⃦	��		⃦ < !$, for every k = 1, 2, 3,…, and some !$ > 0. 

The boundary condition 	ℎ�(�)	 described at the receiver is 

defined by: 

ℎ�(�) = ℎ(�) − g(t)Q1
+ � O		⃦� + ��-$			⃦&� − 		⃦	�

4

��$+ ��-$			⃦&(�-$)S	 
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�	(� − ��	)]}                              (12) 

g(t) 	= 	(g$(�), 	g&(�))*	�	N$	(��), ||��	|| 	≤ �,	For some 

N > 0, and for all � ∈ ��, �	is identity matrix, �� 	 is defined 

to be zero matrix (i.e. ��= 0), �	(� − ��	), k = 1, 2, 3, …, is 

the alternative heaviside step function defined by: 

�	(� − ��	) = �0	��	�	 ≤ 	 ��1	��	�	 > ��  

According to equations (10), (12). The error system y(�, 
) 

will be  

given by: 

%y$%� = −�$�&& + �$�&& − Cy$	 + E$C(
) %&y$%
&  

� ∈ ��, � = 1, 2, 3, … 

∆y	(�, 
) = �� 	y(	�, 
), � = ��	, 
 ∈  0, !", � = 1, 2, 3, … (13) 

C(
) 	≥ 	m > 0, 0 < 
	 < 1 

y	(0, 
) = 	 y_(
), 
 ∈  0, !" 
y	(�, 0) = 	y	(�, !) = ��(�), � ∈ �� 

Where 	y�(	�) = ��(	�) − ��(	�), CDE 

��(�) = g(t)Q1 + � O		⃦� + ��-$			⃦&� − 		⃦	� + ��-$			⃦&(�-$)S	
4

��$
 

�	(� − ��	)]} 

�.���y	�ℎy�	��		⃦	� + ��			⃦	 ≤ 	 !&	 < 1, for	every 

	� = 1, 2, 3, … , �ℎyD 

This is a very important property which will be used in 

upcoming theory. Furthermore because � and � functions are 

both generated by spatiotemporal chaotic systems, It can be 

concluded immediately that they are both equi-banded 

[64,65]. This will be also be a very useful property helped in 

the proof of the next theorem. Using the above description, to 

explore the idea of impulsively synchronizing the two 

systems �, and � reduces to proving the error system (13) is 

equi-attractive in the large or that: 	lim�→4 		⃦e(t, 
)	⃦& = 0	. It 
could be stated now two lemmas reported in ([66], theorem 

3.1, p. 45, and Corollary 2.2 P. 33, respectively), Two other 

ones were proved in order to establish several results needed 

in obtaining certain criteria for system (13) to be equi-

attractive in the large.  

Lemma 2. Let 	l(�) ≠ 0, and �(�) be given functions for  � = �, � + 1, � + 2,…,	 for some � ∈ ��e	Q0R. Then:  

a) The solutions of the equation �(� + 1) = l(�)�(�are 

given by: 

�(�) = �(�)� l(�)
�-$

�� 
 

b) All solutions of the equation ¡(� + 1) = l(�)¡(�) +
�(�)are given by: 	¡(�) = �(�) ∑ £(�)

¤¥(�) +C" 
Where ∑  is the n definite sum, § is the shift operator 

§¡(�) = ¡(� + 1), N	is an arbitrary constant, w(t) is any non-zero solution 

from part (a) 

Lemma 3. ��	D ∈ ¨�e	Q0R, �ℎyD	 
�	�' =	 1

1 + D		©'�$(�) +C, 
Where ©'	 are Bernoulli polynomials, for all	D ∈ ¨�e	Q0R, 

and N	 is an arbitrary constant. 

Lemma 4. Put l(�) = v,  and 	�(�) = 	k�'v�-$  in Lemma 

2, for all t	 = 	1, 2, 3, … (� = 1),  where 0 < v < 1 , D ∈¨�e	Q0R, and � ∈ ��. Then lim�→4 ¨(�) = 0	 
Proof. From Lemmas 2, and 3. It can be concluded that	 	�(�) = v��(1), and 

¡(�) = �(�) ª� �(�)
§�(�) + C« 	

= 	 v��(1)	ª	� 	k�'v�-$
v��$	�(1) +C« 	= 

¬v�-&�(�)	­	� �' +p¯ = ¬v�-& °	� 	1
n + 1	©'�$(�) +p² 

= ¬v�-& °	� 	1
n + 1	©'�$(�) + p² 

= 
³

'�$ ©'�$(�)	v�-& + l¬v�-& 

Where N  is an arbitrary constant, and l = v�(1)N ¬⁄ . 
Notice that  

	 lim�→4 l¬v�-& = 0,	 lim�→4 M ¬
D + 1©'�$(�)	v�-& = 0	 

(Since 0 < v < 1, 	©'	 are Bernoulli polynomials for all  	D ∈ ¨�e	Q0R , and because of L′Hȏpital′s rule applied D + 1	times for the second limit). It follows that  

lim�→4	¡(�) = 0 

We can also prove that the type of the function chosen for �(�)	 in lemma (4) satisfies: 

limµ→4 �(�) 	=	 limµ→4 ¬�'v�-$ = 0	 
For all ∈ ¨�eQ0R, and applying L′Hȏpital′s rule D	times.  

Lemma 5. Let, �(�$, �&	) = 	�$	�&&	 be defined over the set: 

a = 	 ¶(�$, �&	)* ∈ �	&:	0	 ≤ 	 |�$| ≤ ·$, , and	0	 ≤ 	 |�&|≤ ·&º. 
Then the function � satisfies Lipschitz condition on S with 

Lipschitz constant given by 	!� = ·&	7·$& + 4	·$		. In other 

words, for every (�$	, �&	)* , (�$	, �&	)* 	 ∈ a. There is 

|�(�$, �&	) −	�(�$, �&	)	| ≤ !�		⃦(�$ − �$, � − �&)		⃦ 
Proof: Since a is compact, and convex subset of, �&,	and f 

has continuous partial derivatives on S, so by the Mean value 

theorem [33], for some � ∈ 	 (�$, �&	)*  in the line segment 

joining (�$, �&	)* , (�$, �&	)*	 which lies entirely in a. 
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|�(�$, �&	) − �(�$, �&	)	| = 		⃦∇	�O(�). 	(�$ − �$	, �& − �&	S	⃦ 
≤ 		⃦∇�(�)		⃦		⃦(�$ − �, �& − �&	)		⃦ 

= 		⃦(	�&&, 2�$	�&	)		⃦		⃦(�$ − �$	, �& − �&	)		⃦ = 

|�&	|»�&& 	+ 4	�$&			⃦	(�$ − �$	, �& − �&	)		⃦ 

≤	·&	»·&& + 4	·$				⃦	(�$ − �$	, 	�& − �&	)		⃦ 
as required. 

The following theorem established specified the conditions 

required to guarantee the convergence of solution of system 

(13) to zero as t →∞ 

Theorem 2: Let qk be the largest eigenvalue of (� +��	)*(� + ��	), and ∆k+1 = tk+1-tk ≤ ∆, for all k = 1, 2, 3,…, 

and for some ∆ > 0. In addition let: q = a�l� 	v�, d = max 

(δE$, E&), 
·T = max	(a�l	�∈¼3�T(�), 	a�l	�∈¼3�T(�)) 

ζi = a�l	�∈¼3 	½�¾¿	
�� (	�, !) − �¾¿	

�� (	�, 0)½ 	�.�	� = 1,2 

β = 4·&	»·&& + 4	·$	&		 − 2C, Á = 2Eζ ·.⁄ 	If 
H�(�) = 	 OH�$(�), H�&(�)	S* , H�(�) = H�$(�) + H�&(�)	 for all � ∈ ��, and 

qe
∆β

 < 1                                  (14) 

Then system (13) is equi-attractive in the large.  

Proof: The proof of this theorem is similar to that of 

theorem 1. Choosing the Lyapunov energy function to be: 

V(e (t, x)) = ] y*(	�, 
)	y(�, 
)^
_ 	E
 

= { (y$&(	�, 
) + y&&(	�, 
))	E
^
_

 

In this case, by equation (13), and Lemma 5: 

	D��V(e) = { Å	y$	
%y$	%
 		 + 	y&	

%y&	%
 	Æ E
^
_

 

= 2	{ [^
_

(	−�$�&& −	�$�&&)y$	 − Cy$& 	+ 	E$	C(
)	y$	 	%
&y$%
&  

+(�$�&& 	− �$�&&)	y&	−	(C + h)y&& + 	E&	y&	 	%
&y&%
& 	]	E
 

≤ 2{ [	|�$u&& −	�$�&&||y$| + |�$u&& −	�$�&&||y&|	
^

_
]E
 

+2{ [−C	e$& − (C + h)e&&	]E
	^
_

		
+2{ ª		E$	C(
)	y$	

%&y$%
& + 	E&	y&	 	%
&y&%
& 	« 	E
^

_
 

≤ (4·&	»·&& + 4	·$&	 	{ 			⃦y		⃦& − 2	 { [Ce$& + (C + h)e&&]	E
	^
_	

	^
_

 

+	2{ ª		E$	C(
)	y$	
%&y$%
& + 	E&	y&	

%&y&%
& 	« 	E
^
_

 

≤ (4·&	»·&& + 4	·$&	 − 2C)		⃦y		⃦&& 

+2{ ª		E$	C(
)	y$	
%&y$%
& + 	E&	y&	 	%

&y&%
& 	« 	E
^
_

 

Applying integrations by parts: 

First term: 

{ ª		y$		C(
)	%&y$%
& 	« 	E
^
_

=	 [	y$		C(
) %y$%
 	]
!
0

−	{ (%y$%
 	 	C(
) 	+ 	%C
%
 y$	) %y$%
 E
	^

_
	 

= [y$	C(
) %y$%
 	] !0 	− { (^
_

%y$%
 	)&	C(
)E
 − { y$	
%C
%


^
_

	%y$%
 E
 

= [y$C(
) �¾(
�� 	] _̂ -] (	�¾(

�� 	)&	C(
)E
 − [y$	 �¾(
�� 	C(
)] _̂ −^

_
] (y$	 �


¾(
��
 + ��¾


�� �&)C(
)E
^
_  

= { y$	
%&y$%
& 	C(
)E
 ≤ m	^

_
{ y$	

%&y$%
& 	E
^
_

	= m(°	y %y$%
 ² !
0 − 

{ °(%y$%
 	)&	E
) 	≤ 2m	E$	Ç$	�$È(�) − 2E$	m			⃦y� 		⃦&&	²	
^

_
 

Second term: 

	{ 	y&	 	%
&y&%
& 	E
 =^

_
	°	y&	

%y&%
 ² !
0 	

− { (%y&%
 )&E
^
_≤ 2	E&	Ç&	�&È(�) − 2E&			⃦y�		⃦&&	 

Thus: 

	j��g(y) ≤ (4·&	»·&& + 4	·$&	 	− 2C)			⃦y		⃦&& + 

	2	E$	mÇ$	�$È(�) − 2E$	m			⃦y� 		⃦&& + 2	E&	Ç&		�&È(�) − 2E&			⃦y� 		⃦&& 

Where mE$	 +	E&	 = E 

	j��g(y) ≤ (4·&	»·&& + 4	·$&	 	− 2C)			⃦y		⃦&& + 	2	E	ÇH�(�)
− 	2E			⃦	y�			⃦ 22 
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However, 2E			⃦y�		⃦&& 	≤ 0. Therefore, it can be concluded 

that:  

	j��g(y) ≤ (4·&	»·&& + 4	·$&	 	− 2C)			⃦y		⃦&& + 	2	E	ÇH�(�) 

⇔			j��g(y) ≤ ·			⃦y		⃦&& + 	2	E	ÇH�(�) 

= ·g(y) + 2	E	ÇH�(�)⇔ 	j��g(y) − ·g(y) 	≤ 2	E	ÇH�(�) 

By multiplying both sides of the later inequality by y-Ê�	gives rise: 

y-Ê�		j��g(y) − ·	y-Ê�	g(y) ≤ 2	E	ÇH�(�)	y-Ê� 

⇔	j��[ y-Ê�	g(y)" ≤ 2	E	ÇH�(�)	y-Ê� 
It implies by the definition of H�(�),	 and for every � ∈(��, ���$", that  

{ 	jË�Ì	y-Ê�	g(y)Í	E�	 ≤ 	−Áy-Ê�	H�(�) + 	Áy-Ê�+	H�(�)	�
�+

 

Hence, for � ∈ (��, ���$", we have  

g(y(�, 
)) ≤ yÊ∆+3(	g(y(	���, 
)) + ÁOyÊ∆+3( − 1SH�(�)	 (15) 

and  

g(y(���$, 
)) ≤ yÊ∆+3( 	g(y(	���, 
))+ Á(yÊ∆+3( − 1)H�(�)   (16) 

On the other hand, for every 
 ∈  0, !", CDE	y�y�i	� =1,2, …, The structure of the impulses given in system (13),  

y(	���, 
) = (� +	��)y	(��	, 
)⇔g(y(	���, 
)) 

=] y*(	��	, 
)(� +	��)*^
_ (� +

��)	y	(��	, 
)E
	⇔g(y(	���, 
) 	≤
	v� 	] y*(	��	, 
)	y(��	, 
)E
^

_  

i.e., 

g(y(	���, 
) ≤ 	v�g(y(	��	, 
))               (17) 

Substituting the inequality (17) into the inequalities (15), 

and (16), gave: 

g(y(�, 
)) ≤ 	v�yÊ∆+3( 	g(y(�� , 
)) + Á(yÊ∆+3( − 1)H�(�)     (18) 

and  

g(y(���$, 
)) ≤ v�yÊ∆+3( 	g(y(�� , 
))+ÁOyÊ∆+3( − 1S	H�(�)  (19) 

Let:	g� =	g(y(��, 
)), for every k = 1, 2, 3, … In this case 

by inequality (19), and for every k = 1, 2, 3, … 

g��$	 ≤ v�yÊ∆+3( 	g� + 	Á(yÊ∆+3( − 1)H�(�) 

≤ vyÊ∆	g� + 	Á(yÊ∆ − 1)	H�(�) 

Since: 	v� 	< q < 1, for every k = 1, 2, 3, …,  

it can be concluded that for every: � ∈ (��, ���$" 

Á(yÊ∆ − 1)H�(�) 	≤ 	Ávy�-$ 

Hence: 

g��$	 ≤ 	vyÊ∆	g� + Áv�-$                      (20) 

Define: ℵ$ = g$	, ℵ��$ = v�yÊ	ℵ� + Áv�-$, �.�	� =1,2,3, …,	 
This implies, by inequality (20) and induction, that	g�	 ≤ℵ�  

for all � = 1,2,3, …, However, by Lemma 4, and inequaility (14), 

we have: lim�→4(ℵ�) = 0, �. y. lim�→4(g�) = 0	. Therefore 

lim�→4 g(y(	��, 
)) = 0	 
Which, in turn, implies that, by inequality (18): 

lim�→4 g(y(	�, 
)) = 0	 
In other words. Solutions to system (13), and. In addition, 

to the three remarks described previously, the following 

remarks must be added: 

Remark 4. In theorem 2. Two-dimensional model Gray-

Scott is also in system (9), although the more complicated 

than that because of use of theorem needed to assess the 

bilateral integration of Lyapunov energy functions. 

Remark 5. Theorem 2, confirmed existence of matrices 

enhanced elimination the error system (13) to solve, and 

achieving stability, and estimating numerically ratio based on 

knowledge of other system parameters. 
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