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Abstract: This paper examines the sensitivity of nine normality test statistics; W/S, Jaque-Bera, Adjusted Jaque-Bera, 

D’Agostino, Shapiro-Wilk, Shapiro-Francia, Ryan-Joiner, Lilliefors’and Anderson Darlings test statistics, with a view to 

determining the effectiveness of the techniques to accurately determine whether a set of data is from normal distribution or not. 

Simulated data of sizes 5, 10, …, 100 is used for the study and each test is repeated 100 times for increased reliability. Data 

from normal distributions (N (2, 1) and N (0, 1)) and non-normal distributions (asymmetric and symmetric distributions: 

Weibull, Chi-Square, Cauchy and t-distributions) are simulated and tested for normality using the nine normality test statistics. 

To ensure uniformity of results, one statistical software is used in all the data computations to eliminate variations due to 

statistical software. The error rate of each of the test statistic is computed; the error rate for the normal distribution is the type I 

error and that for non-normal distribution is type II error. Power of test is computed for the non-normal distributions and use to 

determine the strength of the methods. The ranking of the nine normality test statistics in order of superiority for small sample 

sizes is; Adjusted Jarque-Bera, Lilliefor’s, D’Agostino, Ryan-Joiner, Shapiro-Francia, Shapiro-Wilk, W/S, Jarque-Bera and 

Anderson-Darling test statistics while for large sample sizes, we have; D’Agostino, Ryan-Joiner, Shapiro-Francia, Jarque-Bera, 

Anderson-Darling, Lilliefor’s, Adjusted Jarque-Bera, Shapiro-Wilk and W/S test statistics. Hence, only D’Agostino test 

statistic is classified as Uniformly Most Powerful since it is effective for both small and large sample sizes. Other methods are 

Locally Most Powerful. Shapiro-Francia, an improvement of Shapiro-Wilk is more sensitive for both small and large samples, 

hence should replace Shapiro-Wilk while the Adjsted Jarque-Bera and the Jarque-Bera should both be retained for small and 

large samples respectively.  
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1. Introduction 

Normality tests are used to determine whether a set of data 

could be modeled by a normal distribution or to investigate 

whether a set of observations is normally distributed. 

Statistical methods can be classified into two; parametric and 

nonparametric methods. Parametric methods such as Student-

t test and Analysis of Variance require that the set of data to 

be used is normally distributed, otherwise, the tests become 

invalid. Nonparametric tests such as Friedman test, Kruskal-

Wallis test, Mann-whitney test, etc require no assumption on 

the distribution of the data. According to Nornadiah and Yap 

(2011), normal distribution is the underlying assumption of 

many statistical procedures, hence, the need for normality 

test in the field of statistical inference. In testing for 

normality, the primary aim is to investigate whether or not 

available (sample) data was drawn from a normally 

distributed population. In some cases, where real life data do 

not satisfy the necessary parametric assumptions, researchers 

transform such data to adjust for normality and other basic 

assumptions of parametric tools such as homogeneity of 

variance (Seth, 2008; Jason, 2002; Jason, 2010; Pitchaya et 

al, 2012).  

Normality test procedures can be categorized into two; 

graphical and analytical method. Graphical methods involve 

the use of charts (or graphs) examples include quantile-
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quantile plot (Q-Q plot), histogram, box-plot and stem-and-

leaf plot. Analytical test for normality testing involves the 

use of mathematical formulae, this include Shapiro-Wilk test, 

Jarque-Bera test, Kolmogorov-Smirnov test, Ryan-Joiner test 

etc. Many researchers, especially those with phobia for 

mathematics, apply or prefer graphical approach because it 

requires less formula and can easily be understood, even by 

the beginner in research.  

Statistical tests generally have limits where they tend to be 

weak and unsuitable for what they are meant for. Normality 

tests are numerous with significant variations in terms of 

sensitivity as the powers of the tests vary significantly and 

even produce unequal p-value using the same set of data. 

This implies the inability of some of the normality tests to 

detect the actual distribution of a set of data which could lead 

to either type I or type II errors.  

Statistical tests that can stand the test of time and 

applicable in every situation with minimal error are referred 

to as Uniformly Most Powerful (UMP) and those that can 

only perform excellently in a defined environment or 

condition are referred to as Locally Most Powerful (LMP) 

(Piegorsch and Bailer, 2005). Due to the proliferation of 

normality tests, the sensitivity of tests could vary 

significantly based on some factors such as parameters of the 

available or sampled data like mean, skewness, kurtosis, 

sample size, etc. Based on the definition given by Piegorsch 

and Bailer (2005), normality tests that are consistent 

irrespective of sample size are here referred to as UMP while 

those that are adopted for some specified sample sizes, either 

small or large, are referred to as LMP.  

Recently, many researchers investigated the strength of 

some normality techniques and their adequacy in the 

detection of normality of sets of data. Ryan (1990) faults his 

previous research by concluding that the method proposed in 

his earlier research can only be used perfectly for small 

sample sizes. Also, Shapiro and Francia (1976), proposed 

another method called Shapiro-Francia due to the 

incompetence of the first proposed method of test of 

normality by Shapiro and Wilk (1965) called Shapiro-Wilk. 

In like manner, Jarque-Bera test was proposed by another 

researcher who strictly considered kurtosis and skewness as 

measures of normality of a set of data and later modified the 

method to form Adjusted Jarque-Bera test.  

Inaddition, many researchers have investigated the 

competencies of some of the existing methods due to the 

proliferation of normality tests and there exists significant 

variations in their conclusions as seen in the results of Yap and 

Sim (2011), Nornadiah and Yap (2011), Panagiotis (2010) and 

Mayette (2013). Researchers such as Stephen (1974), Douglas 

and Edith (2002), Siddik (2006), Derya et al (2006), Frain 

(2006), Nor-Aishah and Shamsul (2007), Rinnakorn and Kamon 

(2007), Zvi et al (2008), Nornadiah and Yap (2011), Yap and 

Sim (2011), and Shigekazu et al (2012) have investigated the 

sensitivity of various normality techniques using power of test 

by simulating data from desirable distribution. Most of the 

works failed to categorize the methods based on sample size and 

in terms of peakedness and skewness of the data.  

Hence, this paper which aims at evaluating the 

performance of some existing normality techniques with 

regards to a wide range of sample sizes and distributions, 

with a view to classifying them into Uniformly Most 

Powerful (UMP) and Locally Most Powerful (LMP) tests. 

2. Review of Normality Techniques 

Investigated 

2.1. Shapiro-Wilk Statistic (W) Normality Test 

According to Farrel and Stewart (2006), Shapiro-Wilk 

statistic is based on order statistics of the sample, the case 

weights have to be restricted to integers. The W statistic is 

defined as: 
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the statistic W. 

 
2.2. Shapiro-Francia Test 

According to Royston (1983), the Shapiro-Francia Test 

statistic (W ′ ) is computed using  
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Where xi is the ordered observed values arranged in 

ascending order and mi is the vector of the expected values of 

standard normal order statistics. x  is the mean of the 

observed values.  

Critical value of W ′  is available in a statistical table and 

decision is based on the comparison of statistic and the 

critical value. The null hypothesis is rejected if the critical 

value is less than the statistic W ′ . 

2.3. Jarque-Bera Normality Test 

The Jarque-Bera test is a goodness-of-fit test of whether 

sample data have the skewness and kurtosis matching a 

normal distribution. The test is named after Carlos Jarque and 

Anil K. Bera (1980). The test statistic JB is defined as 
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where n is the number of observations (sample size); S is the 

sample skewness, and k is the sample kurtosis: 
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where 3
µ  and 4

µ  are the estimates of third and fourth central 

moments respectively, x  is the sample mean, and 2σ  is the 

estimate of the second central moment, the variance. The 

calculated value is compared with the table value using Chi-

Square distribution table at a desirable level of significance 

(usually 0.05). The decision rule is; accept the null 

hypothesis if the table value is greater than the calculated 

value, otherwise, reject.  

2.4. Modified/Adjusted Jarque-Bera (AJB) Test Statistic 

In the modified Jarque-Bera test statistic, the computation 

of both skewness and kurtosis differ from the previous 

Jarque-Bera test statistic as modified by Urzua (1996). Here, 

the Skewness (g1) is; 
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where n is the sample size, s is the standard deviation, 
i

x  is 

the i
th

 observation and x is the mean (average observation) 

of the observed data. The kurtosis (g2) is computed using; 
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Then, AJB becomes; 
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The decision rule is; accept the null hypothesis if the table 

value is greater than the calculated value, otherwise, reject 

H0. 

2.5. Ryan-Joiner Normality Test 

According to Ryan (1976), the test assesses normality by 

calculating the correlation between sample data and its 

normal scores. If the correlation coefficient is close to 1, the 

population is said to be normal. The Ryan-Joiner statistic 

assesses the strength of this correlation; if it falls below the 

appropriate critical value, reject the null hypothesis of 

population normality.  

Considering set of observations; 1, 2, ...,
i

x where i n= , 
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where 

x
m  is the mean of the set of observations and 

x
s is the 

standard deviation of the observations. By definition, 
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To test:  

H0: r is insignificant (r = 0) 

versus 

H1: r is significant (r ≠ 0) 

Using the test statistic:  
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the null hypothesis is rejected if the tcalculated > ttabulated value, 

otherwise, it is accepted. Using p-value, the null hypothesis is 

rejected if the p-value is less than the level of significance of 

the test (0.05). Then, for the test of normality, the hypothesis 

is accepted if the “r” is significant. 

2.6. D’Agostino D Test

 
According to D’Agostino and Stephen (1986), the test 

statistic can be used to detect departure of data set from 

normality. It requires that the observations be ordered in 

ascending order and the mean deviations of the ordered data, 

used to compute Dcalculated which was compared with the 

range/interval of values from table values of D (Dtabulated). 

The null hypothesis is rejected if the Dcalculated value falls 

outside the range of values from the D’Agostino critical 

values, otherwise, it is accepted. The test statistic is;  
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 observation and n = sample 

size. The critical value of the test is obtained from the 

Critical Value for D’Agostino D normality test. The 

computed value is compared with the tabulated value (Dtab) 

and the null hypothesis is rejected if the Dcal falls outside the 

range of critical values, otherwise, it is accepted. One of the 

disadvantages of the test is that the lowest sample size it can 

accommodate is 10. Meaning, it cannot be used for sample 

size less than 10.  
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2.7. W/S Test 

The test uses sample standard deviation and the data range 

which is the difference between maximum observation and 

the minimum observation. The test statistic is expressed as; 

w
q

s
=                                      (14) 

where w is the range of available set of data and ‘s’ is the 

sample standard deviation.  
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The critical value is read from W/S normality test table 

which has boundary values a and b, where a is the lower 

boundary or the left-sided critical values and b is the upper 

boundary or the right-sided critical value. The null 

hypothesis is rejected if the calculated q value falls outside 

the boundary of the table values, otherwise, it is accepted.  

One of the advantages of the test is that it can be used for 

even samples size less than 5 as the table has the least value 

as low as 3.  

2.8. Modified Kolmogorov-Smirnov Normality Test 

(Lilliefor’s Test) 

Modified Kolmogorov-Smirnov test is a non-parametric 

test for equality of continuous probability distributions which 

can be used to compare a sample with reference probability 

distribution or to compare two samples (Wikipedia, 2013). 

Kolmogorov-Smirnov statistic quantifies the distance 

between the empirical distribution function of the sample and 

the cumulative distribution function of the reference 

distribution, or between the empirical distribution functions 

of two samples. If the observed difference is sufficiently 

large, the test will reject the null hypothesis of the population 

normality. The test statistic is given as; 
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N z is the 

cumulative probability associated with Zi for the standard 

normal distribution. Therefore, L is the maximum absolute 

value of the biggest difference between the probability 

associated to 
i

z  when 
i

z  is normally distributed and the 

observed frequency ( ( )
i

zℓ ). The null hypothesis of normality 

is rejected when the L value is greater than or equal to the 

critical value (Molin and Abdi, 2007). 

2.9. Anderson Darling Test 

According to D'Agostino and Stephen (1986), the test 

compares the Empirical Cumulative Distribution (E.C.D) 

function of sample data with the distribution expected. If this 

observed difference is sufficiently large, the test will reject 

the null hypothesis of population normality. The test statistic 

is a squared distance that is weighted more heavily in the 

tails of the distribution. The Anderson-Darling normality test 

statistic is given as:  
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Where F is the cumulative distribution function of the 

normal distribution and xi is the ordered observations. 

3. Yardstick for Classification of 

Normality Techniques into UMP and 

LMP 

The study involves both small and large sample sizes. 

Normality testing techniques that can detect normality of a 

set of data irrespective of the sample size, either small or 

large will be referred to as UMP but those that are better for 

either of small or large sample size will be categorized as 

LMP. This implies that any normality testing technique 

classified as UMP can be used by researchers for test of 

normality, irrespective of sample size of the data.  

4. Source and Sample Size of the Data 

Simulation was used in the generation of the required data 

using defined statistical distributions with known parameters. 

Symmetric distributions such as normal distribution; N(2,1) 

and N(0,1), Student-t distribution (8), Cauchy distribution (7, 

3), and asymmetric distributions such as Chi-square 

distribution ( 2 (4)χ ), and Weibull distribution [7,3] were used 

in the simulation of data. Since the sample space of the 

parameter values are unlimited, the values were chosen 

randomly since from the literature, the methods have similar 

behaviour irrespective of the parameters of the distributions 

considered. (Siddik, 2006; Normadiah and Yap, 2011; Yap and 

Sim, 2011; Marmolejo-Ramos and Gonza’Lez-Burgos, 2012).  

Also from literature, it is confirmed that at sample size of 

100 and above, the normality techniques have the same 

behaviour and sensitivity to both normally distributed and 

non-normally distributed data (Ryan and Joiner, 1976; Derya 

et al, 2006; Normadiah and Yap, 2011, Nor-Aisha et al., 2007 

and Mayette and Emily, 2013; Abbas, 2013), therefore, 

maximum sample size considered in this study is 100.  

5. Algorithm for Monte Carlo Simulation 

According to Schaffer (2010), Monte Carlo (MC) 
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simulation is used to determine the performance of an 

estimator or test statistic under various scenarios. The 

structure of a typical Monte Carlo exercise is as follows: 

1. Specify the “Data Generation Process”.  

2. Choose a sample size N for the MC simulation. 

3. Choose the number of times to repeat the MC 

simulation. 

4. Generate a random sample of size N based on the Data 

Generation Process. 

5. Using random sample generated in 4 above, calculate 

the statistic(s).  

6. Go back to (4) and repeat (4) and (5) until desirable 

replicate is achieved.  

7. Examine parameter estimates, test statistics, etc.  

6. Determination of Sensitivity of 

Normality Techniques 

The P-value was used in the study of sensitivity of 

normality testing techniques considered. In statistical 

analysis, the p-value defines the point at which the test starts 

being significant. The decision rule is to reject the null 

hypothesis if the p-value is less than the level of significance. 

In this study, a p-value greater than level of significance 

implies the set of data is normally distributed and the higher 

the value, the more sensitive the statistic used among the rest 

provided the data is simulated using normal distribution..  

According to Nornadiah and Yap (2011), power of a 

statistical test is the probability that the test will reject the 

null hypothesis when the alternative hypothesis is true (i.e. 

the probability of not committing a Type II error). The power 

is in general a function of the possible distributions, often 

determined by a parameter, under the alternative hypothesis. 

As the power of test increases, the chance of a Type II error 

occurring decreases. The probability of a Type II error 

occurring is referred to as the false negative rate (β). 

Therefore power of test is equal to 1 − β, which is also 

known as the sensitivity (Gupta, 2011).  

7. Data Analysis 

This section deals with analysis of simulated data from 

symmetric and asymmetric distributions using nine selected 

normality test methods (univariate methods). The data 

analysis involves following steps; 

1. Simulate data of sizes n =5, 10,..., 100 from the six 

distributions; N(2,1), N(0,1), Weibull (7,3), 2 (4)χ , t(8), 

and Cauchy (7,3).  

2. For each sample size, n, replicated 100 times, 

i Calculate the normality test statistics for each of the 

nine univariate normality tests  

ii Reject/Accept the null hypothesis;  

H0: the data are normally distributed. 

H1: the data are not normally distributed. 

iii Calculate the error rate = 

(100)

number of times wrong decision is recorded

number of replicate
 

iv Calculate the type I error or power of test = 

1 ( )p type II error−  

See Tables 1 to 9 for the error rates obtained for the nine 

normality tests methods.  

8. Error Rates 

Table 1. Error Rate of W/S Test Statistic. 

  Asymmetry  Symmetry 

 N[2,1)] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.10 0.03 0.91 0.86 0.91 0.92 

10 0.11 0.08 0.88 0.97 0.89 0.71 

15 0.07 0.09 0.91 0.91 0.80 0.48 

20 0.07 0.07 0.82 0.94 0.79 0.25 

25 0.08 0.06 0.88 0.81 0.76 0.17 

30 0.07 0.08 0.87 0.85 0.85 0.14 

35 0.13 0.06 0.92 0.85 0.77 0.08 

40 0.08 0.09 0.91 0.82 0.78 0.04 

45 0.10 0.05 0.89 0.90 0.65 0.04 

50 0.11 0.05 0.88 0.78 0.76 0.01 

55 0.12 0.06 0.86 0.78 0.79 0.01 

60 0.12 0.06 0.76 0.79 0.70 0.01 

65 0.10 0.07 0.78 0.81 0.71 0.01 

70 0.13 0.08 0.84 0.83 0.73 0.02 

75 0.08 0.08 0.75 0.76 0.66 0.00 

80 0.11 0.08 0.79 0.77 0.69 0.01 

85 0.11 0.07 0.73 0.76 0.65 0.00 

90 0.06 0.09 0.77 0.78 0.64 0.00 

95 0.13 0.07 0.78 0.79 0.60 0.00 

100 0.06 0.08 0.74 0.82 0.62 0.00 

From Table 3, it can be seen vividly that the test is highly 

inconsistent as the error rate is considerably high irrespective of 

the sample sizes and for all the distributions except Cauchy (7, 

3). However, the behaviour of the test is different for t-

distribution which belongs to the same category as Cauchy 

distribution highlighting the inconsistency of W/S test.  

Table 2. Error Rate of JB Test Statistic. 

  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.00 0.00 1 1 1 1 

10 0.00 0.00 0.98 0.92 1 0.61 

15 0.01 0.03 0.97 0.83 0.91 0.29 

20 0.01 0.01 0.95 0.73 0.90 0.21 

25 0.02 0.01 0.96 0.68 0.85 0.15 

30 0.01 0.03 0.97 0.52 0.89 0.10 

35 0.05 0.05 0.93 0.42 0.80 0.01 

40 0.04 0.03 0.89 0.29 0.82 0.01 

45 0.07 0.03 0.81 0.33 0.72 0.01 

50 0.01 0.02 0.82 0.27 0.76 0.00 

55 0.08 0.02 0.82 0.12 0.80 0.00 

60 0.07 0.02 0.84 0.14 0.72 0.01 

65 0.05 0.02 0.76 0.12 0.72 0.01 

70 0.03 0.04 0.83 0.08 0.71 0.01 

75 0.02 0.03 0.83 0.12 0.68 0.00 

80 0.04 0.02 0.85 0.07 0.67 0.00 

85 0.01 0.02 0.85 0.04 0.70 0.00 

90 0.00 0.02 0.76 0.03 0.62 0.00 
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  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

95 0.02 0.03 0.70 0.00 0.63 0.00 

100 0.01 0.03 0.70 0.00 0.58 0.00 

From Table 2 the error rate of Jarque-Bera test decreases 

as the sample size increases, an indication that the method is 

more active or efficient for large sample size especially for 

the non-normal distributions. 

Table 3. Error Rate of AJB Test Statistic. 

  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.03 0.05 0.03 0.04 0.07 0.71 

10 0.02 0.03 0.05 0.17 0.05 0.41 

15 0.04 0.05 0.07 0.24 0.11 0.18 

20 0.04 0.05 0.06 0.35 0.13 0.16 

25 0.05 0.02 0.06 0.37 0.18 0.10 

30 0.05 0.05 0.04 0.53 0.14 0.09 

35 0.08 0.08 0.12 0.61 0.23 0.01 

40 0.04 0.03 0.14 0.73 0.82 0.00 

45 0.08 0.05 0.23 0.75 0.70 0.01 

50 0.01 0.02 0.20 0.73 0.71 0.00 

55 0.09 0.05 0.22 0.89 0.68 0.00 

60 0.10 0.05 0.17 0.90 0.68 0.01 

65 0.05 0.04 0.28 0.89 0.69 0.01 

70 0.03 0.05 0.20 0.93 0.67 0.01 

75 0.03 0.04 0.20 0.88 0.63 0.00 

80 0.05 0.04 0.18 0.94 0.65 0.00 

85 0.02 0.02 0.16 0.96 0.65 0.00 

90 0.02 0.01 0.26 0.97 0.60 0.00 

95 0.02 0.03 0.31 1.00 0.62 0.00 

100 0.03 0.03 0.31 1.00 0.55 0.00 

For the non-normal distribution, error rate increases as sample 

size increases except for the Cauchy (7, 3). For the normal 

distribution, there is no impact of sample size on the error rate. It 

was observed that the error rate is significantly reduced for small 

sample sizes for the non-normal distributions for the ADJ test 

statistic, an indication that the adjusted Jarque-Bera Test is an 

improvement on the Jarque-Bera test for small sample sizes. 

Table 4. Error Rate of D’Agostino Test Statistic. 

  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 - - - - - - 

10 0.05 0.04 0.53 0.64 0.73 0.15 

15 0.04 0.04 0.53 0.59 0.72 0.18 

20 0.06 0.05 0.52 0.71 0.74 0.15 

25 0.04 0.05 0.52 0.68 0.73 0.13 

30 0.04 0.06 0.51 0.51 0.78 0.11 

35 0.04 0.06 0.42 0.34 0.74 0.09 

40 0.03 0.05 0.43 0.42 0.62 0.06 

45 0.03 0.06 0.32 0.36 0.64 0.05 

50 0.04 0.05 0.32 0.41 0.63 0.02 

55 0.03 0.05 0.32 0.36 0.62 0.02 

60 0.03 0.04 0.36 0.47 0.65 0.01 

65 0.02 0.02 0.22 0.31 0.62 0.01 

70 0.02 0.02 0.23 0.26 0.61 0.01 

75 0.02 0.03 0.21 0.21 0.64 0.01 

80 0.02 0.02 0.21 0.23 0.66 0.00 

  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

85 0.02 0.02 0.19 0.26 0.62 0.01 

90 0.01 0.02 0.21 0.18 0.65 0.00 

95 0.01 0.02 0.22 0.21 0.62 0.00 

100 0.01 0.01 0.20 0.18 0.62 0.00 

From Table 4, the strength of the test statistic increases as 

sample size increases, an indication that the test is good or 

more sensitive for large sample sizes. 

Table 5. Error Rate of Lilliefor’s Test Statistic. 

  Asymmetry Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.08 0.06 0.96 0.94 0.93 0.67 

10 0.06 0.06 0.95 0.83 1 0.46 

15 0.04 0.05 0.97 0.76 0.90 0.20 

20 0.02 0.01 0.91 0.69 0.96 0.18 

25 0.03 0.02 0.89 0.67 0.89 0.11 

30 0.02 0.04 0.92  0.52 0.86 0.08 

35 0.02 0.04 0.89 0.46 0.94 0.02 

40 0.03 0.04 0.93 0.41 0.94 0.01 

45 0.03 0.03 0.89 0.44 0.88 0.01 

50 0.04 0.03 0.85 0.31 0.88 0.00 

55 0.02 0.02 0.82 0.25 0.91 0.00 

60 0.02 0.03 0.81 0.24 0.83 0.01 

65 0.02 0.03 0.79 0.25 0.93 0.01 

70 0.01 0.04 0.80 0.10 0.86 0.01 

75 0.02 0.03 0.86 0.10 0.88 0.00 

80 0.02 0.05 0.85 0.08 0.90 0.00 

85 0.01 0.04 0.93 0.10 0.87 0.00 

90 0.02 0.04 0.75 0.03 0.85 0.00 

95 0.02 0.04 0.82 0.03 0.83 0.00 

100 0.01 0.03 0.79 0.04 0.81 0.00 

Lilliefors’ test statistic has lower sensitivity, an indication 

that the test statistic is weak in test of normality except 

Cauchy (7, 3). 

Table 6. Error Rates of Shapiro-Wilk Test Statistic. 

  Asymmetry  Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.05 0.06 0.97 0.95 0.88 0.71 

10 0.06 0.07 0.91 0.82 0.99 0.44 

15 0.06 0.06 0.96 0.62 0.87 0.22 

20 0.02 0.04 0.89 0.57 0.89 0.13 

25 0.02 0.03 0.90 0.42 0.87 0.10 

30 0.03 0.02 0.80 0.33 0.86 0.05 

35 0.04 0.02 0.85 0.21 0.85 0.00 

40 0.03 0.04 0.86 0.09 0.90 0.00 

45 0.02 0.04 0.74 0.07 0.77 0.01 

50 0.03 0.03 0.76 0.07 0.78 0.00 

55 0.03 0.03 0.73 0.04 0.80 0.00 

60 0.02 0.01 0.79 0.00 0.82 0.01 

65 0.02 0.04 0.67 0.01 0.76 0.01 

70 0.02 0.04 0.68 0.00 0.74 0.01 

75 0.03 0.04 0.74 0.00 0.70 0.00 

80 0.02 0.03 0.80 0.01 0.73 0.00 

85 0.02 0.03 0.82 0.01 0.78 0.00 

90 0.02 0.03 0.63 0.00 0.67 0.00 

95 0.01 0.02 0.66 0.00 0.65 0.00 

100 0.01 0.02 0.67 0.00 0.65 0.00 
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From Table 6, the error rate decreases as sample size 

increases, an indication of higher sensitivity for large sample 

sizes.  

Table 7. Error Rate of Shapiro-Francia Test Statistic. 

  Asymmetry Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.03 0.02 0.87 0.84 0.85 0.61 

10 0.04 0.03 0.84 0.81 0.87 032 

15 0.04 0.03 0.85 0.74 0.85 0.18 

20 0.01 0.03 0.89 0.43 0.86 0.10 

25 0.01 0.03 0.87 0.41 0.84 0.10 

30 0.02 0.02 0.84 0.43 0.83 0.04 

35 0.02 0.02 0.81 0.21 0.81 0.01 

40 0.02 0.03 0.82 0.05 0.87 0.01 

45 0.02 0.03 0.78 0.06 0.73 0.00 

50 0.03 0.03 0.78 0.04 0.75 0.00 

55 0.02 0.03 0.71 0.03 0.76 0.00 

60 0.02 0.02 0.72 0.01 0.78 0.01 

65 0.02 0.03 0.66 0.01 0.71 0.01 

70 0.01 0.04 0.62 0.00 0.73 0.01 

75 0.02 0.03 0.71 0.00 0.71 0.01 

80 0.02 0.03 0.76 0.01 0.72 0.00 

85 0.02 0.02 0.76 0.01 0.75 0.00 

90 0.01 0.02 0.61 0.00 0.62 0.00 

95 0.01 0.03 0.62 0.00 0.61 0.00 

100 0.01 0.03 0.62 0.00 0.61 0.00 

The Shapiro-Francia has decreasing error rates as sample 

size increases. When compared with Shapiro-Wilk, it also 

has lower error rates, which makes it better than Shapiro-

Wilk test statistic.  

Table 8. Error Rate of Ryan-Joiner Test Statistic. 

  Asymmetry Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.06 0.05 0.06 0.09 0.19 0.75 

10 0.03 0.05 0.05 0.18 0.19 0.65 

15 0.03 0.03 0.06 0.28 0.18 0.43 

20 0.04 0.05 0.06 0.24 0.11 0.32 

25 0.02 0.05 0.06 0.31 0.17 0.21 

30 0.05 0.05 0.06 0.47 0.19 0.11 

35 0.05 0.03 0.08 0.76 0.09 0.08 

40 0.04 0.02 0.12 0.73 0.72 0.04 

45 0.05 0.03 0.13 0.75 0.70 0.02 

50 0.02 0.03 0.10 0.73 0.81 0.00 

55 0.05 0.04 0.12 0.81 0.78 0.01 

60 0.08 0.04 0.17 0.84 0.78 0.01 

65 0.03 0.04 0.18 0.83 0.69 0.01 

  Asymmetry Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

70 0.03 0.03 0.10 0.83 0.57 0.01 

75 0.03 0.03 0.10 0.83 0.43 0.00 

80 0.04 0.02 0.18 0.91 0.55 0.00 

85 0.02 0.02 0.16 0.92 0.55 0.00 

90 0.02 0.03 0.16 0.91 0.40 0.00 

95 0.02 0.02 0.21 0.93 0.52 0.00 

100 0.02 0.02 0.21 0.94 0.35 0.00 

From Table 8, Ryan-Joiner test statistic is good for small 

sample sizes but poor for large sample sizes except Cauchy 

and normal distributions. 

Table 9. Error Rate of Anderson Darling Test Statistic. 

  Asymmetry Symmetry 

 N[2,1] N[0,1] 
Weibull 

7(3) 

Chi-

Sqr.(4) 
t(8) Cauchy(7,3) 

5 0.00 0.00 0.99 1 1 1 

10 0.00 0.00 0.98 0.98 0.92 0.77 

15 0.01 0.03 0.98 0.97 0.92 0.31 

20 0.01 0.01 0.9 0.87 0.90 0.22 

25 0.02 0.01 0.9 0.82 0.88 0.14 

30 0.01 0.03 0.96 0.73 0.76 0.11 

35 0.05 0.04 0.93 0.44 0.79 0.05 

40 0.04 0.03 0.85 0.31 0.80 0.04 

45 0.04 0.03 0.83 0.30 0.73 0.05 

50 0.01 0.02 0.83 0.31 0.72 0.02 

55 0.05 0.02 0.82 0.29 0.76 0.01 

60 0.05 0.02 0.83 0.21 0.72 0.01 

65 0.05 0.02 0.75 0.20 0.72 0.01 

70 0.03 0.02 0.76 0.09 0.70 0.01 

75 0.02 0.03 0.72 0.10 0.69 0.01 

80 0.03 0.02 0.78 0.06 0.69 0.00 

85 0.01 0.01 0.77 0.03 0.70 0.00 

90 0.00 0.01 0.76 0.03 0.62 0.00 

95 0.00 0.02 0.73 0.01 0.62 0.00 

100 0.01 0.02 0.71 0.00 0.42 0.00 

The error rates show that Anderson Darling’s test statistic 

is good for small sample sizes but poor for large sample sizes 

except for Cauchy and normal distributions. See Table 10 for 

power of the nine methods considered.  

9. Power of Test 

Table 10. Power of Nine Selected Univariate Normality Tests Under Evaluation. 

  
5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

 
Weibull (7,3) 0.09 0.12 0.09 0.18 0.12 0.13 0.08 0.09 0.11 0.12 0.14 0.24 0.22 0.16 0.25 0.21 0.27 0.23 0.22 0.26 

W/S Chi-Sqr (4) 0.14 0.03 0.09 0.06 0.19 0.15 0.15 0.18 0.1 0.22 0.22 0.21 0.19 0.17 0.24 0.23 0.24 0.22 0.21 0.18 

 
t(8) 0.09 0.11 0.2 0.21 0.24 0.15 0.23 0.22 0.35 0.24 0.21 0.3 0.29 0.27 0.34 0.31 0.35 0.36 0.4 0.38 

 
Cauchy (7,3) 0.08 0.29 0.52 0.75 0.83 0.86 0.92 0.96 0.96 0.99 0.99 0.99 0.99 0.98 1 0.99 1 1 1 1 

 
Weibull (7,3) 0 0.02 0.03 0.05 0.04 0.03 0.07 0.11 0.19 0.18 0.18 0.16 0.24 0.17 0.17 0.15 0.15 0.24 0.3 0.3 

JB Chi-Sqr (4) 0 0.08 0.17 0.27 0.32 0.48 0.58 0.71 0.67 0.73 0.88 0.86 0.88 0.92 0.88 0.93 0.96 0.97 1 1 

 
t(8) 0 0 0.09 0.1 0.15 0.11 0.2 0.18 0.28 0.24 0.2 0.28 0.28 0.29 0.32 0.33 0.3 0.38 0.37 0.42 

 
Cauchy (7,3) 0 0.39 0.71 0.79 0.85 0.9 0.99 0.99 0.99 1 1 0.99 0.99 0.99 1 1 1 1 1 1 
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5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 

 
Weibull (7,3) 0.97 0.95 0.93 0.94 0.94 0.96 0.88 0.86 0.77 0.8 0.78 0.83 0.72 0.8 0.8 0.82 0.84 0.74 0.69 0.69 

AJB Chi-Sqr (4) 0.96 0.83 0.76 0.65 0.63 0.47 0.39 0.27 0.25 0.27 0.11 0.1 0.11 0.07 0.12 0.06 0.04 0.03 0 0 

 
t(8) 0.93 0.95 0.89 0.87 0.82 0.86 0.77 0.18 0.3 0.29 0.32 0.32 0.31 0.33 0.37 0.35 0.35 0.4 0.38 0.45 

 
Cauchy (7,3) 0.29 0.59 0.82 0.84 0.9 0.91 0.99 1 0.99 1 1 0.99 0.99 0.99 1 1 1 1 1 1 

 
Weibull (7,3) - 0.47 0.47 0.48 0.48 0.49 0.58 0.57 0.68 0.68 0.68 0.64 0.78 0.77 0.79 0.79 0.81 0.79 0.78 0.8 

D'Agostino Chi-Sqr (4) - 0.36 0.41 0.29 0.32 0.49 0.66 0.58 0.64 0.59 0.64 0.53 0.69 0.74 0.79 0.77 0.74 0.82 0.79 0.82 

 
t(8) - 0.27 0.28 0.26 0.27 0.22 0.26 0.38 0.36 0.37 0.38 0.35 0.38 0.39 0.36 0.34 0.38 0.35 0.38 0.38 

 
Cauchy (7,3) - 0.85 0.82 0.85 0.87 0.89 0.91 0.94 0.95 0.98 0.98 0.99 0.99 0.99 0.99 1 0.99 1 1 1 

 
Weibull (7,3) 0.04 0.05 0.03 0.09 0.11 0.08 0.11 0.07 0.11 0.15 0.18 0.19 0.21 0.2 0.14 0.15 0.07 0.25 0.18 0.21 

Lilliefor's Chi-Sqr (4) 0.06 0.17 0.24 0.31 0.33 0.48 0.54 0.59 0.56 0.69 0.75 0.76 0.75 0.9 0.9 0.92 0.9 0.97 0.97 0.96 

  t(8) 0.07 0 0.1 0.04 0.11 0.14 0.06 0.06 0.12 0.12 0.09 0.17 0.07 0.14 0.12 0.1 0.13 0.15 0.17 0.19 

  Cauchy (7,3) 0.33 0.54 0.8 0.82 0.89 0.92 0.98 0.99 0.99 1 1 0.99 0.99 0.99 1 1 1 1 1 1 

  Weibull (7,3) 0.03 0.09 0.04 0.11 0.1 0.2 0.15 0.14 0.26 0.24 0.27 0.21 0.33 0.32 0.26 0.2 0.18 0.37 0.34 0.33 

SW Chi-Sqr (4) 0.05 0.18 0.38 0.43 0.58 0.67 0.79 0.91 0.93 0.93 0.96 1 0.99 1 1 0.99 0.99 1 1 1 

  t(8) 0.12 0.01 0.13 0.11 0.13 0.14 0.15 0.1 0.23 0.22 0.2 0.18 0.24 0.26 0.3 0.27 0.22 0.33 0.35 0.35 

  Cauchy (7,3) 0.29 0.56 0.78 0.87 0.9 0.95 1 1 0.99 1 1 0.99 0.99 0.99 1 1 1 1 1 1 

  Weibull (7,3) 0.13 0.16 0.15 0.11 0.13 0.16 0.19 0.18 0.22 0.22 0.29 0.28 0.34 0.38 0.29 0.24 0.24 0.39 0.38 0.38 

SF Chi-Sqr (4) 0.16 0.19 0.26 0.57 0.59 0.57 0.79 0.95 0.94 0.96 0.97 0.99 0.99 1 1 0.99 0.99 1 1 1 

  t(8) 0.15 0.13 0.15 0.14 0.16 0.17 0.19 0.13 0.27 0.25 0.24 0.22 0.29 0.27 0.29 0.28 0.25 0.38 0.39 0.39 

  Cauchy (7,3) 0.39 0.68 0.82 0.9 0.9 0.96 0.99 0.99 1 1 1 0.99 0.99 0.99 0.99 1 1 1 1 1 

  Weibull (7,3) 0.94 0.95 0.94 0.94 0.94 0.94 0.92 0.88 0.87 0.9 0.88 0.83 0.82 0.9 0.9 0.82 0.84 0.84 0.79 0.79 

RJ Chi-Sqr (4) 0.91 0.82 0.72 0.76 0.69 0.53 0.24 0.27 0.25 0.27 0.19 0.16 0.17 0.17 0.17 0.09 0.08 0.09 0.07 0.06 

  
t(8) 

Cauchy (7,3) 

0.81 

0.25 

0.81 

0.35 

0.82 

0.57 

0.89 

0.68 

0.83 

0.79 

0.81 

0.89 

0.91 

0.92 

0.28 

0.96 

0.3 

0.98 

0.19 

1 

0.22 

0.99 

0.22 

0.99 

0.31 

0.99 

0.43 

0.99 

0.57 

1 

0.45 

1 

0.45 

1 

0.6 

1 

0.48 

1 

0.65 

1 

  Weibull (7,3) 0.01 0.02 0.02 0.1 0.1 0.04 0.07 0.15 0.17 0.17 0.18 0.17 0.25 0.24 0.28 0.22 0.23 0.24 0.27 0.29 

AD Chi-Sqr (4) 0.00 0.02 0.03 0.13 0.18 0.27 0.56 0.69 0.7 0.69 0.71 0.79 0.8 0.91 0.9 0.94 0.97 0.97 0.99 1 

 
t(8) 

Cauchy (7,3) 

0.00 

0.00  

0.08 

0.29 

0.08 

0.69 

0.10 

0.79 

0.12 

0.86 

0.24 

0.89 

0.21 

0.95 

0.20 

0.96 

0.27 

0.95 

0.28 

0.98 

0.24 

0.99 

0.28 

0.99 

0.28 

0.99 

0.30 

0.99 

0.31 

0.99 

0.31 

1 

0.30 

1 

0.38 

1 

0.38 

1 

0.58 

1 

A test statistic with higher power is better, hence, the higher the power of a method, the better is the method. From Table 3.2, it 

can be seen that as the sample size increases, the power of normality tests increase, collaborating the findings of researchers like; 

Stephen (1974), Douglas and Edith (2002), Siddik (2006), Derya et al (2006), Frain (2006), Nor-Aishah and Shamsul (2007), 

Rinnakorn and Kamon (2007), Zvi et al (2008), Nornadiah and Yap (2011), Yap and Sim (2011), and Shigekazu et al (2012). The 

superiority of the method is easier visualised from graph of the power of the tests against sample sizes, see Figures 1 and 2.  

Comparison of Power of the Test Statistics Using Line Chart 

 

Figure 1. Power of Tests using Symmetric distribution (Cauchy Distribution). 
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Figure 2. Power of Test using Weibull Distribution (Asymmetric Distribution). 

From Figure 1, D’Agostino test statistic has highest power 

for a sample size of 10 while Shapiro-Francia test statistic 

has highest power for sample size 5 to 30 (except when n = 

10). For sample size 35 and above, Shapiro-Francia has equal 

power as Shapiro-Wilk test statistic. It can also be seen that 

the best method for small sample size is not the best method 

for large sample size and that as the sample size increases, 

the power of the tests became unilateral/uniform. 

From Figure 2, it can be deduced that Adjusted Jarque-

Bera, Ryan-Joiner and D’Agostino tests have the highest 

power for asymmetric distributions irrespective of sample 

size. Other techniques have considerably and consistently 

low power for both small and large sample sizes. 

Using both type I error and power of test, the ranking of 

the considered normality tests is as shown in Table 3.3;  

Table 11. Normality Tests in Order of Superiority by Sample Sizes using 

Power of Test and Type I Error. 

Sample 

Size 

 Order of Superiority of normality tests 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

5 AJB Lf RJ SW SF W/S AD JB DA 

10 AJB Lf DA RJ SF SW W/S JB AD 

15 AJB Lf DA RJ SF SW JB W/S AD 

20 AJB Lf DA RJ SF SW AD JB W/S 

25 AJB Lf DA RJ SF SW W/S JB AD 

30 AJB Lf DA SF RJ SW JB AD W/S 

35 AJB Lf DA RJ SF JB AD SW W/S 

40 DA Lf AJB RJ SF AD JB SW W/S 

45 DA RJ SF Lf AJB JB AD SW W/S 

50 DA RJ SF AJB Lf JB AD SW W/S 

55 DA RJ SF Lf JB AJB AD SW W/S 

60 DA RJ SF JB AJB AD Lf SW W/S 

Sample 

Size 

 Order of Superiority of normality tests 

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 

65 DA RJ SF JB AD Lf AJB SW W/S 

70 DA RJ SF Lf JB AD SW AJB W/S 

75 DA Lf RJ SF AD JB AJB SW W/S 

80 DA RJ AD SF JB Lf AJB SW W/S 

85 DA AD RJ JB SF Lf AJB  SW W/S 

90 DA RJ SF JB AD Lf SW AJB W/S 

95 DA RJ SF JB AD Lf SW AJB W/S 

100 DA AD RJ JB SF Lf SW AJB W/S 

10. Conclusion 

From all the results obtained from this study, we conclude 

as follows; 

1. For small sample data, 30n ≤ , the best three normality 

techniques in order of superiority are; (i) Adjusted Jaque-

Bera test (ii) Lilliefor’s test and (iii) D’Agostino test. 

2. For large sample data, 30n > , the best three normality 

techniques in order of superiority are; (i) D’Agostino 

test (ii) Ryan-Joiner test and (iii) Shapiro-Francia test. 

Thus, D’Agostino test is one of the best methods for small 

sample sizes, as well as large sample sizes, thus, it can be 

referred to as Uniformly Most Powerful amongst of all the 

tests evaluated.  

3. The Adjusted Jarque-Bera (AJB) is consistently better 

than Jarque-Bera (JB) for sample data of size 50n ≤
while for 50n > , JB is better, thus, the AJB should be 

used for small sample while JB should be used for large 

sample. This finding validates the purpose of 

modification of JB (Urzua, 1996).  

4. The Shapiro-Francia (SF) is however better than 
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Shapiro-Wilk (SW) for small and large sample data, 

hence, the SW should be replaced by SF in normality 

test. This contradicts the claims of researchers such as 

Yap and Sim (2011), Nor-Aisha et al (2011), 

Marmolejo-Ramos and Gonza’Lez-Burgos (2012), and 

Mayette (2013) that Shapiro-Wilk test statistic is the 

best method without consideration of SF.  

5. W/S test is the worst amongst all the normality testing 

procedures; hence, it should be removed from the list of 

normality tests or adjusted for improved efficiency.  

We recommend as follows; 

D’Agostino test statistic can be referred to as Uniformly 

Most Powerful among considered methods. Shapiro-Francia 

is a true improved method over SW for all sample sizes, 

hence, SF should replace SW. Proper modification of W/S to 

improve its sensitivity is very necessary, otherwise, W/S 

should be removed from the list of normality test statistics. 

D’Agostino D can be compared with other existing normality 

techniques not considered in this work for further validation 

of its superiority. 
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