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Abstract 

In this paper, a novel twenty-three-point second-order rotatable design is formulated utilizing trigonometric functions. Design 

of experiments plays a crucial role in various industries and research fields to investigate the relationship between multiple 

variables and their effects on a response variable. In particular, second order rotatable designs are widely used due to their 

ability to efficiently estimate the main, interaction, and curvature effects. Nevertheless, creating designs with a substantial 

number of points poses difficulties. This study concentrates on developing a second-order rotatable design with twenty-three 

points utilizing trigonometric functions. Trigonometric functions offer a systematic approach to distribute the points uniformly 

in the design space, thereby ensuring the optimal coverage of the experimental region. The proposed construction utilizes the 

properties of sine and cosine functions to generate a balanced and efficient design. The methodology involves dividing the 

design space into equidistant sectors and assigning the points using the trigonometric functions. By carefully selecting the 

starting angle and the angular increment, a complete and orthogonal design is achieved. The design is rotatable, meaning it can 

be rotated to any desired orientation without impairing the statistical properties of the design. Through this construction, the 

design effectively captures the main effects, interaction effects, and curvature effects. This enables reliable estimation of the 

model parameters, leading to accurate predictions and efficient optimization. Additionally, the design is efficient in terms of 

minimizing the number of experimental runs required, thereby reducing costs and time. The suggested second-order rotatable 

design comprising twenty-three points and employing trigonometric functions exhibits its superiority when compared to 

conventional designs. It offers a systematic and straightforward approach to construct a balanced and efficient design for 

studying the relationships between multiple variables. The design's rotatability ensures flexibility in experimental settings, 

making it a valuable tool for researchers and practitioners in various fields. 
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1. Introduction 

The construction of designs plays a crucial role in the field 

of statistical experimental design [11]. It enables researchers 

to systematically and proficiently assess the impact of differ-

ent factors on a response variable. According to Marshall et 

al [13], one popular type of design is the second order rotata-

ble design, which provides a balanced and efficient frame-

work for experimentation. In this article, our attention is di-

rected towards the creation of a twenty-three points second 

order rotatable design using trigonometric functions. This 

design is particularly advantageous as it maximizes the effi-

ciency of the experiment while maintaining the balance 

among the factors. Trigonometric functions, such as sine and 

cosine, are commonly used in the construction of rotatable 

designs due to their symmetry properties [10]. By utilizing 

these functions, we can ensure that the design is rotationally 

invariant, meaning that the estimates of the treatment effects 

do not depend on the orientation of the axes. 

The development of the second-order rotatable design 

comprising twenty-three points through trigonometric func-

tions entails identifying the coordinate points positioned on a 

spherical surface. These points are then transformed to form 

a design matrix that meets the requirements of balance and 

rotatability [12]. This process involves carefully selecting the 

radius of the sphere and the angles of rotation to ensure a 

uniform spread of points across the design space. Once estab-

lished, this design facilitates efficient and precise estimation 

of the primary effects and interactions among the experi-

ment's factors. Additionally, it offers adaptability regarding 

the number of factors and their respective levels that can be 

incorporated [2]. The notion of rotatability which is vital in 

response surface methodology, was first introduced by Box 

and Hunter [8]. They formulated second-order rotatable de-

signs grounded on geometric arrangements. Bose and Draper 

[4] underscore the extensive application of response surface 

fitting methods to assist in the statistical analysis of experi-

mental endeavors, where the product's response is contingent 

upon one or more controllable variables in an uncertain man-

ner. 

This paper introduces a novel three-dimensional second-

order rotatable design, consisting of twenty-three points, cre-

ated using trigonometric functions. The establishment of this 

second-order rotatable design, which involves twenty-three 

points and incorporates trigonometric functions, offers a reli-

able and robust approach to experimental design. Its utiliza-

tion optimizes experimental resources while still providing 

valuable insights into the relationship between factors and 

responses. This design holds great potential for various fields, 

including manufacturing, pharmaceuticals, and agriculture, 

where designing efficient experiments is crucial for scientific 

advancements and decision-making processes [1]. 

 

2. Conditions for Second Order  

Rotatability 

We introduce the typical second-order design as; 

𝑦 =  𝛽0 + 
2

1 1

k k k

i i ii i ij i j

i i i j

x x x x   
  

      (1) 

Box and Hunter (1957), meeting the following criteria en-

sures the attainment of a second-order response surface: 

∑ 𝑥𝑖𝑢
2𝑁

𝑢<1  = N𝜆2 

∑ 𝑥𝑖𝑢
4𝑁

𝑢<1 =3N𝜆4                               (2) 

∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 𝑥𝑗𝑢
2  = N𝜆4 

∑ 𝑥𝑖𝑢
4𝑁

𝑢<1 =3∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 𝑥𝑗𝑢
2 , (i< 𝑗 = 1,2, …𝑘) 

A group of points is deemed to constitute a second-order 

rotatable design when the aforementioned conditions are met, 

alongside the non-singularity of the matrix     utilized in the 

least square estimation [7]. Box and Hunter [8] demonstrated 

that the necessary and adequate condition for this occurrence 

is, 

𝜆4

𝜆2
2 > 

𝑘

𝑘:2
                                       (3) 

3. The Development of ASORD Through 

Trigonometric Function  

Transformations 

Bose and Draper [3] were the pioneers in utilizing trigo-

nometric functions for creating second-order rotatable de-

signs. They introduced transformations in the following for-

mat: 

𝑇1=[
𝐶𝑜𝑠 𝛼, −𝑆𝑖𝑛 ∝, 0 
𝑠𝑖𝑛 ∝, 𝑐𝑜𝑠 ∝, 0

0 0 − 1
]                        (4) 

and 

𝑇2=[

𝐶𝑜𝑠 
∝

2
, 𝑆𝑖𝑛

∝

2
, 0 

𝑠𝑖𝑛 
∝

2
, 𝑐𝑜𝑠

∝

2
, 0

0 0 − 1

]                        (5) 

Where ∝ = 
2 

 
 

These transformations are applied in the current paper to 

construct second order rotatable designs. 

We designate the construction of 3s – Points as T(r, o, b), 
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with corresponding coordinates. 

(r cos t𝛼 𝑟 𝑠𝑖𝑛 𝑡𝛼 0) 

( r sin t ∝  0 r cos t ∝)                          (6) 

(0 r cos t ∝  r sin t ∝ ) 

For t = 0, 1, 2… (s-1) and s 5, When 𝑆  5 set 𝑇0(𝑟, 0,0) 

and points (rcostα, rsintα, 0) = 3𝑆 

The sums and products of the set up to power four for the 

co-ordinates listed in (6) are given by; 

∑ 𝑥𝑖𝑢
2 = 𝑠𝑟2𝑁

𝑢<1 , 

∑ 𝑥𝑖𝑢
4 =

3

4
𝑠𝑟4𝑁

𝑢<1 ,                             (7) 

∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 =
1

8
𝑠𝑟4𝑁

𝑢<1 , 

The excess function for T(r,o,o) is given by; 

∑ 𝑥𝑖𝑢
4𝑁

𝑢<1 - 3∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 𝑥𝑗𝑢
2 = 

3

8
 sr4                  (8) 

In this scenario, the surplus of each individual point fluc-

tuates, necessitating an examination of the cumulative impact 

across all points. Given that its surplus can be manipulated to 

be either positive or negative based on the selection of 𝑟, it 

becomes feasible to integrate the T(r, 0, 0) set with sets ex-

hibiting both positive and negative surpluses. Likewise, the 

coordinates for the four-point set is labeled as G (a, a, a), 

where this set is halved 
1

2
  ( ,  ,  )  and points are 

(  ,  ,  ). 

G (a, a, a) 

G (-a, a, a) 

G (a, -a, a)                                    (9) 

G (a, a, -a) 

The sums and products up to power four for G (a, a, a) is 

given by, 

∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 =4a2 

∑ 𝑥𝑖𝑢
4𝑁

𝑢<1 =4a4                                (10) 

∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 𝑥𝑗𝑢
2 =4a4 

The excess for the above set of points is given by 

∑ 𝑥𝑖𝑢
4𝑁

𝑢<1 - 3∑ 𝑥𝑖𝑢
2𝑁

𝑢<1 𝑥𝑗𝑢
2 = -8a4             (11) 

By augmenting specific sets of points in (6) and (9), a de-

signs in three dimensions was obtained. The augmentation 

was given by 3𝑆 +8. But 𝑆   5 when  𝑆  =5, Combining 

3𝑠 given in (6) with two class of eight-point set given in (9) 

to obtain set denoted  1  given as given by 

3𝑠 +
1

2
[
1

3
 ( 1, 1, 1)]  +

1

2
[
1

3
 ( 2, 2, 2)] , by letting 𝑆 = 5 , 

23 points were obtained. 

4. Construction of Twenty-Three Points 

ASORD 

The moment prerequisites for the collection of twenty-

three points to constitute a second-order rotatable configura-

tion are derived by incorporating the points obtained from the 

3s set and the 8 set, as outlined in (6) and (9), respectively. 

The moment conditions specified in (7) were applied to the 

design point delineated in (6) to ascertain its rotatability. 

Consequently, these conditions yielded: 

∑  𝑖𝑢
2𝑁

𝑈<1 = 𝑆𝑟2 = 𝑁𝜆2  

∑ 𝑥𝑖𝑢
4 =

3

4
𝑆𝑟4 = 3𝑁𝜆4

𝑁
𝑢<1                       (12) 

∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 =
1

8
𝑠𝑟4 = 𝑁𝜆4

𝑁
𝑢<1   

∑ 𝑥𝑖𝑢
4 = 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2𝑁
𝑢<1   

Solving for the excess in (4.1) gave; 

∑ 𝑥𝑖𝑢
4 − 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2 =𝑁
𝑢<1

3

4
𝑆𝑟4 −

3

8
𝑠𝑟4 =

3

8
𝑠𝑟4  (13) 

The moment conditions given in (10) were used in (9) to 

confirm rotatability; 

∑ 𝑥𝑖𝑢
2 = 4 1

2𝑁
𝑢<1   

∑ 𝑥𝑖𝑢
4 = 4𝑁

𝑢<1  1
4                            (14) 

∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 = 4 1
4𝑁

𝑢<1   

∑ 𝑥𝑖𝑢
4 = 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2𝑁
𝑢<1   

Solving for excess in (4.3) gave; 

∑ 𝑥𝑖𝑢
4 − 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2𝑁
𝑢<1 = 4 1

4 − 12 1
4 = −8 1

4 (15) 

Again, the moment conditions given in (10) were used on 

the design point given in (9) to confirm rotatability. Thus, 

these conditions gave. 

∑ 𝑥𝑖𝑢
2 = 4 2

2𝑁
𝑢<1   

∑ 𝑥𝑖𝑢
4 = 4𝑁

𝑢<1  2
4                             (16) 
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∑ 𝑥𝑖𝑢
2 𝑥𝑗𝑢

2 = 4 2
4𝑁

𝑢<1   

∑ 𝑥𝑖𝑢
4 = 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2𝑁
𝑢<1   

Solving for excess in (4.5) gave; 

∑ 𝑥𝑖𝑢
4 − 3∑ 𝑥𝑖𝑢

2𝑁
𝑢<1 𝑥𝑗𝑢

2𝑁
𝑢<1 = 4 2

4 − 12 2
4 = −8 2

4  (17) 

Solving (13), (15) and (17) for excess functions when s=5 

gave; 

15

8
𝑟4 − 8 1

4 − 8 2
4 = 0                (18) 

Let 

 1
2 = 𝑥𝑟2                             (19) 

 2
2 = 𝑦𝑟2                             (20) 

Substituting (19) and (20) to (18) gave; 

(𝑥2 + 𝑦2) = 15
64⁄                       (21) 

Where x is arbitrary and has positive value say 0.05 using 

a python software to solve equation (21) to obtain. 

𝑦 = 0.482 and 𝑥 = 0.05                  (22) 

These finally gave; 

∑ 𝑥𝑖𝑢
223

𝑢<1 = 𝑠𝑟2 + 4 1
2 + 4 2

2 = 23𝜆2  

∑ 𝑥𝑖𝑢
423

𝑢<1 =
3

4
𝑠𝑟4 + 4 1

4 + 4 2
4 = 69𝜆4          (23) 

∑ 𝑥𝑖𝑢
223

𝑢<1 = 5𝑟2 + 0.2𝑟2 + 1.928𝑟2 = 23𝜆2  

𝜆2 = 0.30991𝑟2                        (24) 

∑ 𝑥𝑖𝑢
423

𝑢<1 = 3.75𝑟4 + 0.01𝑟2 + 0.93𝑟4 = 69𝜆4   (25) 

𝜆4 = 0.06797𝑟4                       (26) 

The non-singularity condition was; 

𝜆4

𝜆2
2 =

0.06797

(0.30991)2
= 0.70768 > 

𝑘

𝑘:2
=

3

5
= 0.6     (27) 

therefore 

4

2
2

2

k

k







 = 0.70768 > 0.6 

These points fulfill the non-singularity requirement for se-

cond-order rotatability, thereby meeting the criteria to be 

classified. 

Table 1. An overview of the moment conditions. 

Set composition of class z1 = 3s Z2=G(𝒂𝟏,𝒂𝟏, 𝒂𝟏) Z3=G(𝒂𝟐,𝒂𝟐, 𝒂𝟐) z1 +𝒛𝟐+ z3 

Number of points 
For s=5 

= 15 points 
4 points 4 points 23 points 

𝑁  

∑ 𝑥 2 

𝑖 𝑢  

𝑢 =1 

𝑆𝑟2  4 1
2  4 2

2  𝑠𝑟2 + 4 1
2 + 4 2

2  

𝑁  

∑ 𝑥 4 

𝑖 𝑢  

𝑢 =1 

3

4
𝑠𝑟4  4 1

4  4 2
4  

3

4
𝑠𝑟4 + 4 1

4 + 4 2
4  

𝑁  

∑ 𝑥 2 𝑥 2 

𝑖 𝑢  j𝑢  

𝑢 =1 

1

8
𝑠𝑟4  4 1

4  4 2
4  

1

8
𝑠𝑟4 + 4 1

4 + 4 2
4  

𝑁  𝑁  

∑ 𝑥 4 − 3 ∑ 𝑥 2 𝑥 2 

𝑖 𝑢  𝑖 𝑢  j𝑢  

𝑢 =1 𝑢 =1 

3

8
𝑠𝑟4  −8 1

4  −8 2
4  

3

8
𝑠𝑟4 − 8 1

4 − 8 2
4  
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5. An Application of ASORD 

The objective of the experiment was to assess the impact 

of three organic fertilizer components on the yield of Ipomea 

batatas through the utilization of the twenty-three-point se-

cond-order rotatable design in three dimensions, The fertiliz-

er components and their respective quantities used were; 

1) Poultry manure 𝑥1= 35 gram per hole, 

2) Rabbit manure 𝑥2= 25 gram per hole, 

3) Goat manure 𝑥3=45 gram per hole. 

The focus of the experiment was on the average yield, meas-

ured in grams per hole, of Ipomea batatas, along with the aver-

age number of tubers produced from each hole. The initial letter 

parameters denote the variability in the quantities of factor ap-

plication owing to soil fertility fluctuations, leading to numerous 

expressions of the rotatability criterion. As mentioned by Box 

and Wilson [6], the natural levels of these mineral elements are 

denoted as 𝛾𝑖𝑢, with Box and Draper [5] establishing a specific 

design when 𝜆2 = 1as part of the scaling down condition. 

𝑥𝑖𝑢 =
𝛾𝑖𝑢;𝛾𝑖

 𝑖
  

 𝛾𝑖 =
∑ 𝛾𝑖𝑢

𝑛
𝑖=1

𝑁
  

𝑠𝑖 = [
∑ (𝛾𝑖𝑢;𝛾𝑖)

𝑁
𝑢=1

2

𝑁
]
0.5

                      (28) 

𝛾𝑖𝑢 = 𝑥𝑖𝑢𝑠𝑖 + 𝛾𝑖  

∑ 𝑥𝑖𝑢
2 = 𝑁𝑁

𝑢<1  and ∑ 𝑥𝑖𝑢 = 0𝑁
𝑢<1  

The complete second order model to be fitted to yield val-

ues is, 

𝑦 =  𝛽0 + ∑ 𝛽𝑖𝑥𝑖
23
𝑢<1 + ∑ 𝛽𝑖𝑖𝑥𝑖

223
𝑢<1 + ∑ 𝛽𝑖𝑗𝑥𝑖𝑥𝑗

23
𝑖<𝑗 + 𝜀  (29) 

In the table provided, the treatments for the second-order rotat-

able design comprising twenty-three points in three dimensions 

are presented with their corresponding coded and natural levels. 

Table 2. Coded values and natural levels. 

Coded levels Natural levels Weight_yield 

-1.384437 0 1.384437 34.5653 25 45.3277 52 

1.384437 0 1.384437 35.4347 25 45.3277 87 

-1.384437 0 -1.384437 34.5653 25 44.6723 73 

1.384437 0 -1.384437 35.4347 25 44.6723 55 

-1.384437 1.384437 0 34.5653 25.2014 45 74 

1.384437 1.384437 0 35.4347 25.2014 45 58 

-1.384437 -1.384437 0 34.5653 24.7986 45 92 

1.384437 -1.384437 0 35.4347 24.7986 45 75 

0 1.384437 -1.384437 35 25.2014 45.3277 72 

0 1.384437 1.384437 35 25.2014 44.6723 78 

0 -1.384437 1.384437 35 24.7986 45.3277 89 

0 -1.384437 -1.384437 35 24.7986 44.6723 72 

-1.384437 0 0 34.5653 25 45 65 

1.384437 0 0 35.4347 25 45 56 

0 -1.384437 0 35 24.7986 45 56 

0 -1.384437 0 35 25.2014 45 77 

0 0 1.384437 35 25 45.3277 56 

0 0 -1.384437 35 25 44.6723 59 

-1.384437 0 0 34.5653 25 45 62 

1.384437 0 0 35.4347 25 45 60 

0 1.384437 0 35 25.2014 45 60 

0 -1.384437 1.384437 35 24.7986 45.3277 80 
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Coded levels Natural levels Weight_yield 

0 0 -1.384437 35 25 44.6723 68 

The second order parameter estimation 

The least square method was employed to calculate the regression coefficients, with X representing the design matrix of 

sweet potatoes utilizing the formula (   );     where 

Table 3. Design Matrix. 

X= [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,] 1 -1.384437 0.000000 1.384437 1.916667 0.000000 1.916667 0.000000 -1.916667 0.000000 

[2,] 1 1.384437 0.000000 1.384437 1.916667 0.000000 1.916667 0.000000 1.916667 0.000000 

[3,] 1 -1.384437 0.000000 -1.384437 1.916667 0.000000 1.916667 0.000000 1.916667 0.000000 

[4,] 1 1.384437 0.000000 -1.384437 1.916667 0.000000 1.916667 0.000000 1.916667 0.000000 

[5,] 1 -1.384437 1.384437 0.000000 1.916667 1.916667 0.000000 -1.916667 0.000000 0.000000 

[6,] 1 1.384437 1.384437 0.000000 1.916667 1.916667 0.000000 1.916667 0.000000 0.000000 

[7,] 1 -1.384437 -1.384437 0.000000 1.916667 1.916667 0.000000 1.916667 0.000000 0.000000 

[8,] 1 1.384437 -1.384437 0.000000 1.916667 1.916667 0.000000 -1.916667 0.000000 0.000000 

[9,] 1 0.000000 1.384437 1.384437 0.000000 1.916667 1.916667 0.000000 0.000000 1.916667 

[10,] 1 0.000000 1.384437 -1.384437 0.000000 1.916667 1.916667 0.000000 0.000000 -1.916667 

[11,] 1 0.000000 -1.384437 1.384437 0.000000 1.916667 1.916667 0.000000 0.000000 -1.916667 

[12,] 1 0.000000 -1.384437 -1.384437 0.000000 1.916667 1.916667 0.000000 0.000000 1.916667 

[13,] 1 -1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 0.000000 

[14,] 1 1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 0.000000 

[15,] 1 0.000000 -1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 

[16,] 1 0.000000 1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 

[17,] 1 0.000000 0.000000 1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 

[18,] 1 0.000000 0.000000 -1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 

[19,] 1 -1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 0.000000 

[20,] 1 1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 0.000000 

[21,] 1 0.000000 1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 0.000000 

[22,] 1 0.000000 -1.384437 1.384437 0.000000 1.916667 1.916667 0.000000 0.000000 -1.916667 

[23,] 1 0.000000 0.000000 -1.384437 0.000000 0.000000 1.916667 0.000000 0.000000 0.000000 

Taking a transpose of X above and multiple it again with elements of matrix X the study obtained 

Table 4. Transpose of design Matrix. 

M= [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,] 23.000000 0.00000 0.000000 0.000000 23.000000 23.000000 23.000000 0.00000 3.833333 -1.916667 
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M= [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[2,] 0.000000 23.00000 0.000000 0.000000 0.000000 0.000000 0.000000 0.00000 5.307010 0.000000 

[3,] 0.000000 0.00000 23.000000 -1.916667 0.000000 0.000000 -2.653505 0.00000 0.000000 2.653505 

[4,] 0.000000 0.00000 -1.916667 23.000000 0.000000 2.653505 0.000000 0.00000 -5.307010 -2.653505 

[5,] 23.000000 0.00000 0.000000 0.000000 44.083333 14.694444 14.694444 0.00000 7.347222 0.000000 

[6,] 23.000000 0.00000 0.000000 2.653505 14.694444 44.083333 18.368056 0.00000 0.000000 -3.673611 

[7,] 23.000000 0.00000 -2.653505 0.000000 14.694444 18.368056 44.083333 0.00000 7.347222 -3.673611 

[8,] 0.000000 0.00000 0.000000 0.000000 0.000000 0.000000 0.000000 14.69444 0.000000 0.000000 

[9,] 3.833333 5.30701 0.000000 -5.307010 7.347222 0.000000 7.347222 0.00000 14.694444 0.000000 

[10,] -1.916667 0.00000 2.653505 -2.653505 0.000000 -3.673611 -3.673611 0.00000 0.000000 18.368056 

Then the inverse of M was given as:  

Table 5. Inverse of Design Matrix. 

N= [,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] 

[1,] 0.51440 -0.010416 -0.015942 0.02581 -0.17459 -0.146033 -0.15791 0.00000 0.04514 -0.001080 

[2,] -0.01041 0.048992 0.000377 -0.00560 0.006946 0.000562 0.00685 0.0000 -0.02389 -0.000467 

[3,] -0.01594 0.000377 0.045268 0.00242 0.00501 0.002667 0.008056 0.0000 -0.0016 -0.005707 

[4,] 0.025811 -0.00560 0.002428 0.05093 -0.01159 -0.00815 -0.00958 0.0000 0.024277 0.006150 

[5,] -0.17459 0.00694 0.00501 -0.01159 0.08848 0.04149 0.04942 0.0000 -0.03010 -0.00243422 

[6,] -0.14603 0.00056 0.00266 -0.00815 0.04149 0.072026 0.03326 0.0000 -0.00243 0.004256 

[7,] -0.15791 0.00685 0.00805 -0.0095 0.04942 0.03326 0.0804 0.0000 -0.02969 0.003723 

[8,] 0.00000 0.00000 0.000000 0.0000 0.0000 0.00000 0.00000 0.06805 0.00000 0.00000 

[9,] 0.045145 -0.02389 -0.001636 0.0242 -0.03010 -0.00243 -0.02969 0.0000 0.10357 0.002027 

[10,] -0.00108 -0.00046 -0.00570 0.00615 -0.00243 0.00425 0.0037 0.0000 0.00202 0.0576387 

 

N obtained above was then multiplied with a transpose of 

matrix X and the list of elements of the vector Y as shown 

below to obtain; 

P= [1576.000000 -37.379807 -62.299679 42.917557 

1550.583336 1692.416670 1611.916669 1.916667 

312.416667 -197.416667] 

The estimation of the regression coefficients was accom-

plished by multiplying the elements in N with the list P. This 

process yielded the regression coefficients for the second-

order polynomial model as follows: 

Table 6. Coded Coefficients. 

Term Coef SE Coef T-Value P-Value VIF 

Constant 52.27 6.23 8.40 0.000  

Poultry -2.25 2.55 -0.88 0.395 1.00 

Rabbit -2.57 2.61 -0.99 0.341 1.04 

Goat 0.73 2.61 0.28 0.783 1.04 

http://www.sciencepg.com/journal/ajtas


American Journal of Theoretical and Applied Statistics http://www.sciencepg.com/journal/ajtas 

 

53 

Term Coef SE Coef T-Value P-Value VIF 

Poultry *Poultry 7.34 4.79 1.53 0.149 1.68 

Rabbit *Rabbit 14.83 4.55 3.26 0.006 1.52 

Goat*Goat 8.57 4.55 1.88 0.082 1.52 

Poultry *Rabbit 0.25 4.43 0.06 0.956 1.00 

Poultry *Goat 13.25 4.43 2.99 0.010 1.00 

Rabbit *Goat -4.80 4.07 -1.18 0.259 1.05 

 

This section details the practical estimation of regression 

coefficients within a model designed to accommodate a se-

cond-order equation (29). The model focuses on predicting 

the yield of sweet potato, with poultry, rabbit, and goat ma-

nure serving as explanatory variables. The methodology em-

ployed for developing the yield model is Response Surface 

Methodology. 

The regression coefficients and their significance levels are 

presented in table 6. The analysis reveals that the terms in-

volving 𝑥3and all quadratic terms are statistically significant 

at a significance level of (P < 0.05). Additionally, terms in-

volving the interaction between 𝑥1𝑥2, as well as 𝑥1𝑥3, remain 

significant at a significance level of (P < 0.10). 

Further regression analysis of the experimental data table 7 

indicates that goat manure has a significant positive linear 

effect on sweet potato yield. Among the three parameters 

considered, goat manure exhibits the highest positive linear 

effect (0.73, p=0.783), followed by poultry, while rabbit ma-

nure shows a negative linear effect. 

Interactions between poultry and rabbit, as well as poultry 

and goat, demonstrate a strong positive effect on sweet potato 

yield, suggesting that yield increases with higher levels of 

these factors. Conversely, the interaction between rabbit and 

goat shows a negative impact, indicating a decrease in yield 

with increasing levels of these factors. 

The study also observes that quadratic terms involving all 

factors are significant, which aligns with findings from a pre-

vious study conducted by [9]. In his research, he employed a 

Randomized Complete Block Design, conducting three repli-

cations, and included treatments comprising both cattle ma-

nure and poultry manure. 

From table 6, the fitted model therefore was given as; 

𝑦̂ = 52.27 − 2.25𝑥1 − 2.57𝑥2 + 0.73𝑥3 + 7.34𝑥1
2 + 14.83𝑥2

2 + 8.37𝑥3
2 + 0.25𝑥1𝑥2 + 13.25𝑥1𝑥3 − 4.80𝑥2𝑥3  

Table 7. Analysis of variance for sweet potatoes yield. 

Source DF Adj SS Adj MS F-Value P-Value 

Model 9 2031.41 225.712 2.88 0.041 

Linear 3 146.42 48.806 0.62 0.613 

Poultry 1 60.75 60.750 0.78 0.395 

Rabbit 1 76.44 76.445 0.98 0.341 

Goat 1 6.19 6.189 0.08 0.783 

Square 3 866.40 288.799 3.69 0.040 

Poultry *Poultry 1 184.09 184.094 2.35 0.149 

Rabbit *Rabbit 1 831.89 831.888 10.62 0.006 

Goat *Goat 1 277.61 277.613 3.54 0.082 

2-Way Interaction 3 811.58 270.526 3.45 0.048 

Poultry *Rabbit 1 0.25 0.250 0.00 0.956 

Poultry*Goat 1 702.25 702.250 8.96 0.010 

Rabbit *Goat 1 109.08 109.078 1.39 0.259 
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Source DF Adj SS Adj MS F-Value P-Value 

Error 13 1018.33 78.333   

Lack-of-Fit 8 780.33 97.541 2.05 0.223 

Pure Error 5 238.00 47.600   

Total 22 3049.74    

 

The analysis of variance indicates that there are significant 

using the p-values for linear terms also point out that their 

contribution is significant to the model. 

Table 8. Model summary. 

Model Summary  

S R.sq R.sq (adj) 

8.85061 86.61%  73.49% 

The results for the adjusted 𝑅2  indicate that 73.49% 

(0.7349) of the variation in the response was explained by the 

model. 

As the response surface can be described by a second-

order model, it was important to examine the optimal condi-

tions. Graphical representation is highly beneficial for grasp-

ing the behavior of the second-order response surface [15]. In 

particular, contour plots aid in identifying the surface's shape 

and approximating the optimal response. The contour plot 

depicting the yield of sweet potatoes was presented in figure 

1 and the surface plot in figure 2. 

 
Figure 1. Contour plot. 

The contour plot of weight in grams vs. rabbit data and 

poultry data used for the growth of sweet potatoes, illustrates 

how the weight of the sweet potatoes varies based on the 

combination of factors such as rabbit manure and poultry 

manure. Each contour line on the plot represents a constant 

weight value of the sweet potatoes. By analyzing this plot, 

we can observe how different combinations of rabbit and 

poultry manure impact the weight of the sweet potatoes. This 

visualization helps in understanding the relationship between 

the types of manure used and the resulting growth of sweet 

potatoes, aiding in optimizing agricultural practices for better 

yields [14]. 
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Figure 2. Surface plot. 

A surface plot depicting the effect of poultry and rabbit 

manure on the growth of sweet potatoes illustrates how the 

combination of these manures influences the yield of sweet 

potatoes. The plot visualizes how varying proportions of 

poultry and rabbit manure impact the growth of sweet pota-

toes, with each point on the surface representing a specific 

combination of the two types of manure and the resulting 

yield of sweet potatoes. This visualization helps in under-

standing the relationship between the composition of manure 

and the productivity of sweet potato crops, enabling farmers 

to optimize their use of manure for better yields. 

6. Conclusions 

Based on the analysis of the given second-order model, it 

can be concluded that all three types of effects, namely linear, 

pure quadratic, and interaction, exhibit significance in pre-

dicting the average weight yield of sweet potatoes. Specifi-

cally, the main effects of poultry manure (x₁) and rabbit ma-

nure (x₂), along with their quadratic terms (x₁² and x₂²), 

demonstrate substantial influence on the predicted yield, as 

evidenced by their relatively large coefficients. The main 

effect of goat manure (x₃) appears to have a smaller impact 

on the yield, as indicated by its lower coefficient magnitude. 

Furthermore, significant pure quadratic effects suggest that 

the relationship between the independent variables and the 

yield is not purely linear but exhibits curvature. This is par-

ticularly evident in the cases of x₁² and x₂², where their coef-

ficients imply pronounced quadratic effects. 

While the current study provides valuable insights into the 

effects of different types of manure on sweet potato yield, 

further research and experimentation may be warranted. In-

vestigating additional factors or variables that could influence 

yield, such as soil composition, climate conditions, or alter-

native fertilization methods, can contribute to a more com-

prehensive understanding of yield determinants and aid in 

refining agricultural practices for sweet potato cultivation. 
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